

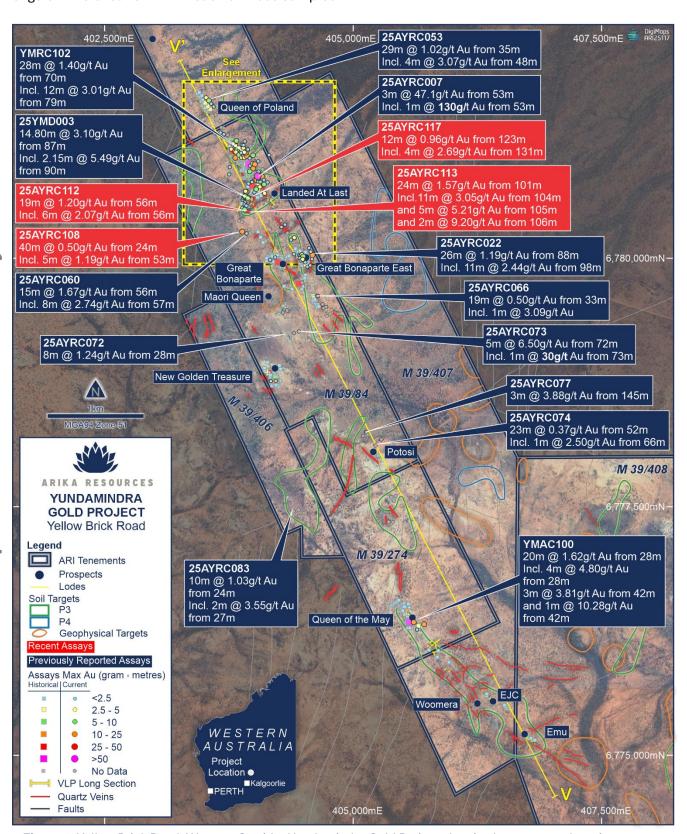
ASX RELEASE: 10 November 2025

Yundamindra Gold Project, WA - Exploration Update

LANDED AT LAST GROWS WITH MULTIPLE STRONG INTERCEPTS IN LATEST EXTENSIONAL DRILLING

Step-out drilling delivers wide zones of strong mineralisation in several holes

KEY HIGHLIGHTS


- Significant new assay results confirm strike and depth extensions to the Landed at Last Prospect (F1 and F0 Faults), at the northern end of the Yellow Brick Road (YBR)/Western Corridor, including:
 - 24m @ 1.57g/t Au from 101m (25AYRC0113), including:
 - 11m @ 3.05g/t Au from 104m; and
 - 5m @ 5.21g/t Au from 105m; and
 - 2m @ 9.20g/t Au from 106m
 - 19m @ 1.20g/t Au from 56m (25AYRC0112), including:
 - 6m @ 2.07g/t Au from 56m
 - 12m @ 0.96g/t Au from 123m (25AYRC117), including:
 - 4m @ 2.69g/t Au from 131m
 - 40m @ 0.50g/t Au from 24m(25AYRC108), including:
 - 5m @ 1.19g/t Au from 53m, and
- New results confirm Landed at Last as a priority focus for near-term resource delineation drilling, alongside the Pennyweight Point Prospect within the Red Brick Road/Eastern Corridor.
- Drilling continues to **highlight the substantial scale of the opportunity at Yundamindra**, with each round of assay results delivering multiple mineralised intercepts.
- **Drilling is now in progress at Pennyweight Point** testing for down-plunge extensions to a series of exceptional intersections achieved from recent RC and diamond drilling.
- ~17,000 metres drilled to date as part of the latest program, with assays awaited for 31 holes.

Arika Resources Limited (ASX: ARI) ("Arika" or "Company") is pleased to report latest assay results from ongoing drilling at the **Yundamindra Gold JV Project**, located 65km south-west of Laverton in the world-class Northeastern Goldfields mining district of WA.

Arika launched an extensive step-out drilling campaign in June, with over 17,000m drilled to date. The aim of the program is to test the depth and strike extents of multiple known gold occurrences and newly-defined targets throughout the Yundamindra area, highlighting the scale of the opportunity at the project. Drilling has continued to systematically test multiple gold targets, including:

- The 'Yellow Brick Road' Landed at Last Trend within the Western Corridor (Figure 1);
- The 'Emerald City Trend' South-Central Complex; and
- Most recently along the 'Red Brick Road' Pennyweight Point Trend within the Eastern Corridor.

This release provides a summary of the most recently received preliminary results for holes 25YMRC089-25YMRC117 inclusive, from the Red Brick Road and Yellow Brick Road, including the Landed at Last Prospect. The results include 1m individual assays and 4m composite assays. Anomalous results reported from 4 metre composite samples will be re-split and re-submitted on a 1m basis to refine the distribution of gold mineralisation within each of these samples.

Figure 1: Yellow Brick Road, Western Corridor Yundamindra Gold Project showing key prospect locations, recent intersection summaries,2025 RC and diamond drillholes, 2024 RC holes and historical drilling, Gold-in-soil geochemical anomalies and geophysics structural targets.

To date, a total of 150 holes for ~17,000 metres have been completed as part of the program, with assays awaited for 31 holes or approximately 4,300 metres.

Arika's Managing Director, Justin Barton, said:

"Drilling targeting depth and strike extensions to the south along both the F1 and F0 faults, which form part of the larger Landed at Last system, has been highly successful delivering some impressive widths and grades of mineralisation in step-out holes.

"We are continuing to see thick zones of gold mineralisation featuring internally higher grades in multiple holes, highlighting the scale and endowment of the Landed at Last system. These results come from the F1 and F0 structures in the southern part of the known deposit, highlighting significant potential to grow the mineralisation in this direction.

"Landed at Last has now been confirmed as a priority focus for near-term resource drilling, and we look forward to getting the rig back to the northern end of the Yellow Brick Road to start this process as soon as we can.

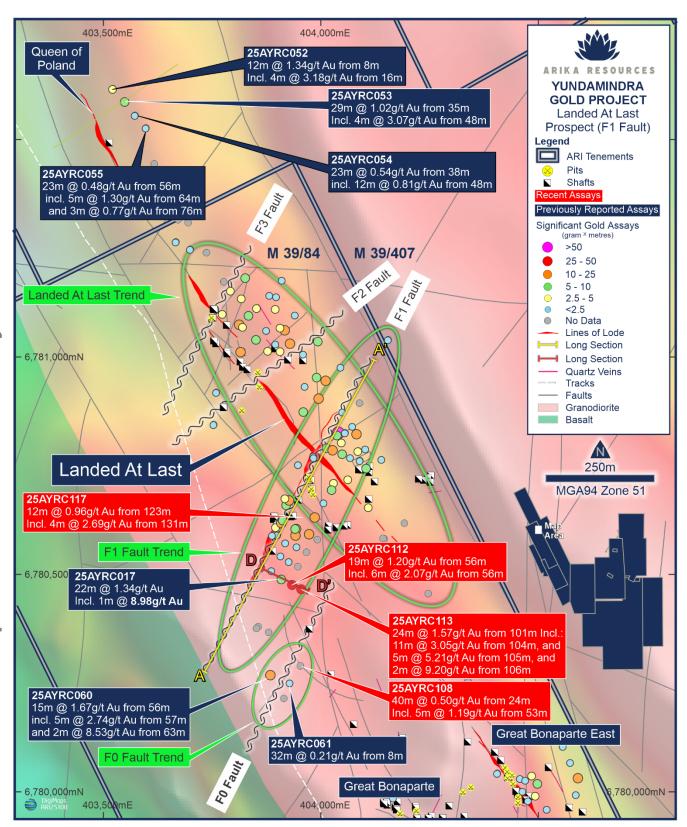
"At the moment, drilling is in full flight at our other priority target area, Pennyweight Point, where we are drilling to test for extensions of some exceptional thick, high-grade results reported last year. This is an exciting time for Arika as we start to deliver results from our top-rated prospects."

A summary of drill-hole collar locations and preliminary results for all holes are presented in Appendix 1, Tables 1

Figures 1 to 6 present Prospect Location Plans, Drill-hole Collar Plans, long section, cross-section and regional project location plans respectively.

Drilling Results Summary

Yundamindra is dominated by the Danjo Granite Dome in the central-north of the project area and the Bulla Rocks Granite Dome to the west. The domes are flanked to the east and west by attenuated greenstone belts occupying NE and NW striking shear zones displaying multiple ~NE-SW striking second and third order linking structures. The eastern and western shear zones converge south of the Danjo dome in the Southern Complex which is characterised by a widespread array of N-S striking, possible axial-planar shears, and major E-W trending cross-cutting faults.


These major structural trends are described as the Yellow Brick Road - Western Corridor, Red Brick Road - Eastern Corridor and Emerald Cities - South Complex respectively.

Arika's recent drilling along the Yellow Brick Road has been focused on expansion by testing strike extensions to establish the continuity of ore-hosting structures between known occurrences.

- Depth extensions: to confirm the continuity of ore hosting structures well below the depth of historical workings and previous shallow drilling.
- New targets: First-pass drill testing of newly identified geochemical/geophysical/geological targets.

The drilling has been highly successful in achieving each of these aims, with strong results reported from each of the areas selected for testing. The assays presented in this release relate to holes drilled within the F1 and F0 Faults - Landed at Last area of the Yellow Brick Road. Results from several holes drilled to test the Queen of Sheba/Pride of Pindinnie and Washinton prospects west of Pennyweight Point, Red Brick Road – Eastern Corridor, were also received.

Figure 2: Enlargement of the Landed at Last area showing key prospects, principal structural relationships over simplified geology. Latest results from extensional drilling to the south on both the F1 and f0 faults are highlighted in red call-out boxes.

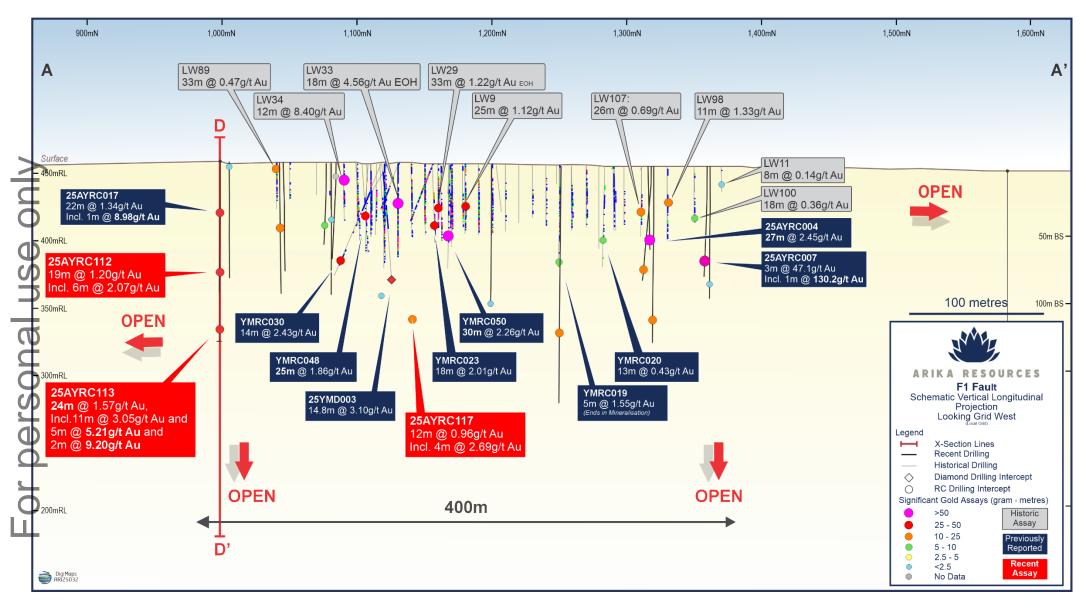
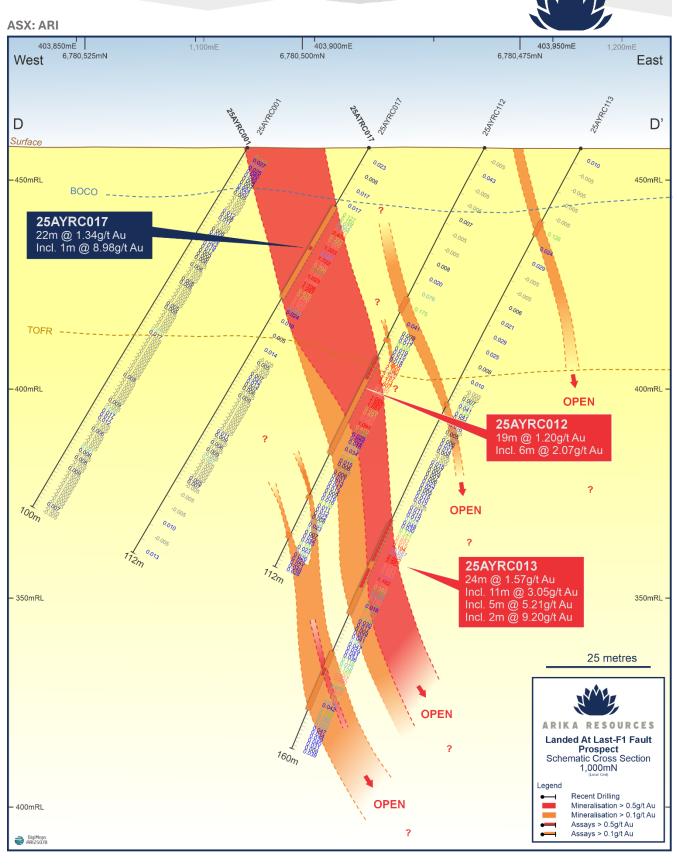



Figure 3: Yundamindra Gold Project - Vertical Longitudinal Projection of the F1 Fault looking (local grid) west showing recent results, Arika's 2025 RC and Diamond drilling, 2024 RC drilling, and historical holes. NOTE the lack of drilling beneath 50m vertical depth. Hole 25AYRC113 is the deepest hole completed to date.

ABN: 92 086 839 992
www.arika.com.au
Phone: 08 6500 0202
enquiries@arika.com.au

Figure 4: F1 Fault, Schematic cross-section Line 1,000mN (Local Grid) showing latest results from extensional drilling beneath previously reported drillhole 25AYRC017. This represents the deepest drilling completed at F1 to date. The mineralised zone remains open in all directions and appears to be strengthening as it approaches the contact between the Danjo Granite and the Western Mafics.

Yellow Brick Road - Western Corridor

Gold mineralisation has been identified within both granite and mafic rocks close to the regional contact between the Danjo Granite and a wide sequence of mafic volcanic rocks to the west. Gold occurs within NW trending, shallow east dipping quartz vein filled shears (Landed at Last) and within sub-vertical NE-SW trending, intensely altered shear zones almost entirely devoid of vein quartz (F-Series Faults).

As a part of this recent campaign, several holes were drilled into the main contact between the Danjo Granite and the Western Mafics. This is a similar structural position to Pennyweight Point on the eastern side of the Danjo Dome and has never been systematically explored.

It presents as a major shallow east-dipping thrust and a potential large-scale conduit for transporting and trapping gold-bearing fluids.

Drilling for strike and depth extensions at the southern end of the F1 and F0 Faults has confirmed both structures to be improving in width and grade approaching the main contact described above between the Danjo Granite and the western mafics.

Importantly these latest results were returned from the deepest holes completed to date in the area and, at F1, confirm continuous mineralisation extending from surface to at least 120m down the dip plane (refer Figure 4). The zone remains open in all directions. Latest significant results include:

- 19m @ 1.20 g/t Au from 56m (25AYRC112), including
 - 6m @2.07 g/t Au from 56m
- 24m @ 1.57g/t Au from 101m (25AYRC113), including
 - 11m @ 3.05 g/t Au from 104m, and
 - 5m @ 5.21 g/t Au from 105m, and
 - 2m @ 9.20 g/t Au from 106m

Drillhole 25AYRC111 was drilled orthogonal to the interprete contact between the Danjo Granite and the western mafics to provide a first pass look at the contact zone. The hole reported weak mineralisation (1m @ 0.12 g/t Au from 36m downhole depth) within mafics immediately adjacent to the granite margin. Further testing of structural intersections at the contact is planned as a part of the ongoing program.

Red Brick Road - Eastern Corridor

Results from several wide spaced holes designed to test the Queen of Sheba, Pride of Pindinnie and Washington structures west of Pennyweight Point were received. Weak to moderate gold mineralisation over generally narrow intervals has been reported at each of the targeted positions. A best result was returned from the Pride of Pindinnie which included:

- 7m @ 0.86 g/t Au from 42m (25AYRC102),including:
 - o 2m @ 2.40 g/t Au from 42m

Given the significant high-grade production from the historical workings, the strong surface geochemistry and strong rock chip results at each of these locations, further work is clearly warranted to identify the primary controlling structures to guide further drill testing.

Next Steps

Yundamindra

- Close-spaced deposit definition sectional and wider extensional drilling is currently in progress at Pennyweight Point.
- > Testing of new targets along 'The Red Brick Road Trend' Eastern Corridor identified from the recently completed geophysical surveys over the Pennyweight Point area will follow.
- Results will be released continuously once data is received and interpreted.

Yundamindra Gold Project

The Yundamindra Gold JV Project is located 65km south-west of Laverton, 250km north of Kalgoorlie, Western Australia (Figure 8). The Project is a Joint Venture between Arika Resources Ltd (ASX: ARI) and Nex Metals (ASX: NME), where Arika holds 80% and NME holds 20% with Arika acting as Project manager.

Regionally, it is situated toward the westernmost margin of the Laverton Greenstone Belt (LGB) in the Yilgarn Craton of Western Australia.

The Laverton Greenstone Belt is one of the best endowed gold regions in Australia. It hosts two world-class producing mines, namely Sunrise Dam at 8 million oz contained Gold and Wallaby at 7 million oz contained gold (Standing 2008; Austin, 2022)¹, which are located just ~20-30km east of Arika's Yundamindra Gold Project. Total gold production from the belt is estimated to be in excess of 28 million ounces.

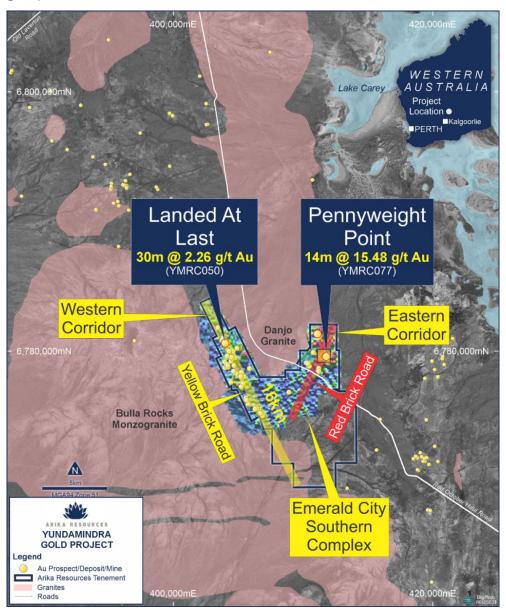


Figure 5: Yundamindra Gold Project showing key target areas and prospects

² Standing, Jonathon G, Terrane Amalgamation in the Eastern Goldfields Superterrane, Yilgarn Craton: Evidence from tectonostratigraphic studies of the Laverton Greenstone Belt. Precambrian Research, V161, Issues 1-2, 15 February 2008, pages 114-134.. Austin, Joseph Martin, Testing the 'terrane-boundary' concept and geodynamics in the NeoArchean: A cse study of the stratigraphy from the West and East Laverton Greenstone Belts. Queensland University of Technology 2022.134.. Austin, Joseph Martin, Testing the 'terrane-boundary' concept and geodynamics in the NeoArchean: A cse study of the stratigraphy from the West and East Laverton Greenstone Belts. Queensland University of Technology 2022.

The Laverton Greenstone Belt is one of several greenstone belts that collectively define the Kurnalpi tectonostratigraphic terrane of the Northeastern Goldfields 'Superterrane'.

The Kurnalpi Terrane is bounded by the regionally recognisable Hootanui Shear Zone to the east and the Ockerburry Shear Zone to the west – long-lived, deep crustal/mantle penetrating structures which, along with their related second order faults, are considered responsible for the development of many of the region's most significant gold deposits.

At the local scale, the Yundamindra Project covers both the south-western and south-eastern flanks and the southern nose of the Danjo Granite Dome, a hornblende-granodiorite batholith which intruded maficfelsic and lesser sedimentary lithologies.

This style of structural setting is commonly associated with the development of many of the region's most significant gold deposits. Although the area has had a long history of prospect-scale mining, it has not been subjected to systematic modern exploration and remains under-explored, particularly at depth.

This presents ARI with a unique opportunity to discover significant mineralisation near several processing facilities.

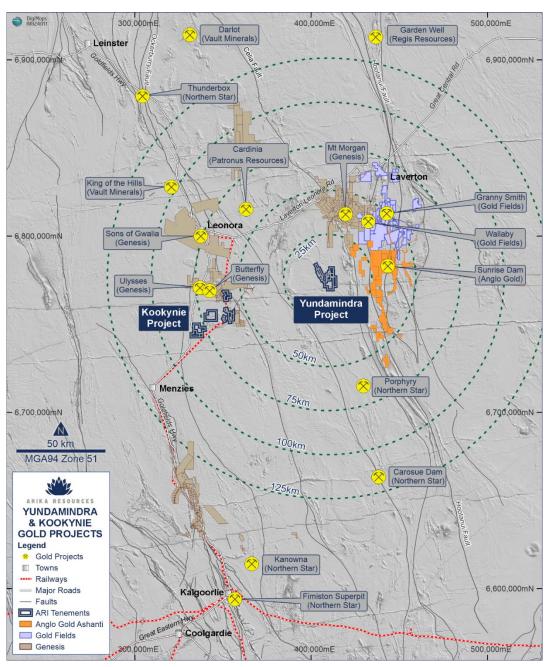


Figure 6: Regional Location Plan showing proximity of Projects to Major Deposits, Mines and Processing Facilities.

Contributors

Omni GeoX, Core Geophysics, Newexco, Sugden Geoscience Pty Ltd, ERM Technical Mining Services, DigiMaps, Industrial Safe, Perenti Group, Karlkurla Pty Ltd

This announcement is approved by the Board of Arika Resources Limited.

ENQUIRIES

Investors

Justin Barton Managing Director +61 8 6500 0202

enquiries@arika.com.au

Media

Nicholas Read Read Corporate +61 8 9388 1474

info@readcorporate.com.au

Competent Person Statement

The information that relates to Exploration Results is based upon information compiled by Mr Steve Vallance, who is a full-time employee of Arika Resources Ltd in the role of General Manager Exploration and Executive Technical Director. Mr Vallance is a Member of The Australian Institute of Geoscientists (AIG). Mr Vallance has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the JORC Code 2012). Mr Vallance consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

- (a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies.
- (b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and
- (c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

No New Information

To the extent that this announcement contains references to prior exploration results which have been cross referenced to previous market announcements made by the Company, unless explicitly stated, no new information is contained. The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed.

About Arika Resources Limited

We are focused on delivering value to shareholders through the development and discovery of high-quality gold assets, including the Kookynie and Yundamindra Gold Projects, in Western Australia.

Arika Resources Limited is continuing to build on the potential large-scale gold footprints at the Yundamindra and Kookynie Gold Projects by expanding on known mineralisation and targeting new discoveries through a pipeline of high priority brownfield and greenfield targets.

Appendix One - Significant Intercepts and Collars

Significant intercepts in the table below were calculated on a length weighted average basis.

Each RC hole drilled by Arika was sampled in its entirety from start to finish using a combination of 2m or 4m composites and 1m individual samples. For diamond drillholes the diamond cored section of each hole was sampled in its entirety from the start of each cored section to end of hole with sampling guided by geological observations and maximum sample lengths generally not exceeding 1m.

For the low-grade envelope this was based on a 1m sample returning an assay value of greater than 0.1 g/t Au and for the high-grade zone, based on internal intervals reporting assays greater than 0.5 g/t Au, 5.0g/t Au and 10.0 g/t Au respectively. The maximum width of internal waste was generally 4m however the mineralised intervals are based on geological observations and current interpretation. Consequently, in some instances a broader interval of internal waste, interpreted as a 'horse' of limited dip and strike extent may be carried in order to honour the true nature of the ore hosting structure as defined by adjacent drillholes at that location.

No top cut-off was applied due to the early nature of the assessment.

TABLE 1: YUNDAMINDRA EXPLORATION DRILLING RESULTS

AREA			Collar	Location an	d Orientation					Int	ersect	ion >0.1g/	t Au & >0.1	g/t Ag	Comments
9	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	ays	
<u>Ψ)</u>								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
YELLOW BRICK ROAD	Bonaparte East	25AYRC062	RC	404280	6780316	455.3	-60	240	94	20	24	4	0.15	NSR	
#										36	60	24	0.19	0.12	
3									incl	47	48	1	1.21	0.29	
\overline{a}										67	67	1	0.13	0.15	
25		0547/0000	DO.	40.404.5	0700040	455.0		0.40							
1	Bonaparte East	25AYRC063	RC	404315	6780340	455.3	-60	240	100	80	88	8	0.43		
Ф		25AYRC064	RC	404376	6780187	455.5	-60	240							
0	Bonaparte East	20/1110004	110	404070	0700107	400.0	00	240	136	20	21	1	0.58	NSR	
										23	24	1	0.14	NSR	
Б										27 41	30 46	3 5	0.32 0.19	NSR NSR	
ı										48	49	1	0.13	0.10	
_										52	53	1	0.17	0.10	
										65	66	1	0.32	0.21	
										73	74	1	0.20	NSR	
								-		85	86	1	0.15	NSR	

AREA			Collar	Location an	d Orientation	1				Int	tersect	ion > 0.1 g/	't Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
	Bonaparte East	25AYRC065	RC	404409	6780209	455.3	-60	240	190	32	34	2	0.30	NSR	
										47	54	7	0.98	NSR	
									incl	49	54	5	1.30	NSR	
										61	62	1	0.29	NSR	
										71	74	3	0.19	NSR	
										77	82	5	0.18	0.22	
										136	137	1	0.10	NSR	
										139	140	1	0.11	NSR	
	Golden Treasure Deeps	25AYRC066	RC	404644	6779622	457.9	-60	240	118	25	27	2	0.23	0.10	
	Беерз						-00	240	110	33	46	13	0.50	0.17	
									incl	35	36	1	1.31	0.29	
									&	42	43	1	3.09	0.12	
									- Q	51	52	1	0.22	0.12	
										54	59	5	0.54	0.21	
										64	73	9	0.29	0.18	
										83	84	1	0.19	NSR	
										- 00		-	0.10	11011	
	Golden Treasure	25AYRC067	RC	404693	6779538	458.0									
	Deeps						-60	240	124	45	49	4	0.14	0.11	
										51	57	6	0.57	0.17	
	Golden Treasure	25AYRC068	RC	404704	6779500	458.3									4m composite & single metre
	Deeps	25			27.70000	.55.5	-60	240	124	4	10	6	0.23	0.16	
										14	15	1	0.28	0.10	
										19	27	8	0.51	0.17	
										35	36	1	0.12	0.13	
										41	42	1	0.12	0.17	
										44	52	8	0.44	0.16	

AREA			Collar	Location an	d Orientation	1				Int	tersect	ion > 0.1 g/	't Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
	Golden Treasure Deeps	25AYRC069	RC	404728	6779512	457.6	-60	240	124	12	17	5	0.43	0.12	
	·									28	37	9	0.25	0.17	
										40	41	1	0.15	NSR	
										62	67	5	0.26	0.18	
	Maori Queen	25AYRC070	RC	404295	6779455	458.3	-60	240	88	49	56	7	0.20	NSR	MQ Lode
	Maori Queen	25AYRC071	RC	404337	6779476	458.7	-60	240	112	81	84	3	1.05	NSR	MQ Lode
	Maori Queen	25AYRC072	RC	404404	6779249	456.2	-60	240	88	28	36	8	1.24	NSR	4m Composites.
										71	72	1	0.21	NSR	
				404455	6779265	457.0									
	Maori Queen	25AYRC073	RC	404455	6779200	457.0	-60	240	112	20	24	4	0.25		
										72	77	5	6.50	1.95	MQ Lode Repeat: 39.67g/t Au
									incl	73	74	1	30.00	8.92	nopout. 00.07g/t/lu
										101	102	1	0.17	NSR	
	Potosi	25AYRC074	RC	405226	6778118	450.3	-60	240	100	52	75	23	0.37	0.29	4m composites & single metre assays
'	1 01031	20A1110074	110	403220	0770110	450.5	-00	240	incl	52	56	4	0.88	0.73	4m composite 4m composite
									&	66	72	6	0.61	0.21	single metre assays. Potosi Lode
									incl	66	67	1	2.50	0.50	omgre mene accajon etcor zoac
	Potosi	25AYRC075	RC	405284	6778179	450.0	-60	240	154	128	133	5	0.91	1.45	Potosi Lode
									incl	129	133	4	1.14	0.88	
									&	130	131	1	2.96	1.28	
	Potosi	25AYRC076	RC	405101	6778215	450.9	-60	240	100	74	78	4	0.30	0.49	Potosi Lode

1, 1	ШУ
	5
	DSD D
	מ
1000	201
	שׁ
	<u> </u>

AREA			Collar	Location an	d Orientation					In	tersect	tion >0.1g/	t Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
										97	99	2	0.43	0.49	
	Potosi	25AYRC077	RC	405101	6778215	450.9	-60	240	118	65	66	1	0.11	NSR	
										106	108	2	1.46	0.84	Potosi Lode
										136	137	1	0.13	NSR	
										139	140	1	0.41	NSR	
5										142	143	1	0.15	NSR	
1)										145	148	3	3.88	0.37	finished in mineralisation. Part of Potosi Nth Lode(s)?
9															
9 0 0	Granites King	25AYRC078	RC	405358	6777350	451.7	-60	240	88	29	31	2	0.28	0.16	
K	Granites King	25AYRC079	RC	405402	6777347	449.2	-60	270	106	51	53	2	0.42	0.15	
0															
	Potosi Sth	25AYRC080	RC	405412	6777558	447.5	-60	250	94	83	85	2	0.13	NSR	
SOLIAL															
/)	Potosi Sth	25AYRC081	RC	405386	6777597	447.6	-60	250	94	20	30	10	0.13	NSR	4m composites and single metre assays.
D										35	36	1	0.23	NSR	
<u> </u>	Potosi Sth	25AYRC082	RC	405429	6777612	446.8	-60	250	124	32	36	4	0.13	0.10	4m composite
										39	44	5	0.17	NSR	
5										46	52	6	0.16	0.11	
										69	81	12	0.12	0.12	Historically untested (new) structural zone?
_										92	93	1	0.12	NSR	
	Yundamindera	25AYRC083	RC	404403	6777456	459.1	-60	240	88	24	34	10	1.03	0.49	ultramafic schist host.
									incl	27	29	2	3.55	0.38	Yundamindera Lode
									&	32	34	2	1.23	1.04	

AREA			Collar	Location an	d Orientation	l				Int	tersect	tion >0.1g/	/t Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length		says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
	Yundamindera	25AYRC084	RC	404452	6777472	458.4	-60	240	112	67	68	1	0.12	0.87	
	Yundamindera	25AYRC085	RC	404541	6777518	458.3	-60	240	124	15	25	10	0.31	0.26	
\mathbf{f}										35	43	8	0.37	0.16	
\blacksquare									incl	41	42	1	1.77	0.16	
P										47	50	3	0.18	0.11	
d)	Yundamindera	25AYRC086	RC	404585	6777540	459.0	-60	240	118	22	23	1	0.13	0.24	
	- runuammusiu	20/11/10000		10.1000	0777010	10010		2.0		26	36	10	0.20	0.34	
15										44	48	4	0.16	0.16	
										55	56	1	0.13	0.11	
Ja										58	61	3	0.43	0.12	
7										64	66	2	0.14	NSR	
た										68	69	1	0.30	0.18	
										71	73	2	0.43	0.19	
Φ	Yundamindera	25AYRC087	RC	404744	6777609	459.8	-60	240	124	72	77	5	0.18	0.30	
<u> </u>	Vivo de unio de un	OF AVECCOO	DO.	40.4007	0777405	450.0	00	0.40	100		44	44	0.40	NOD	
	Yundamindera	25AYRC088	RC	404867	6777495	458.6	-60	240	106	30 49	41 52	11 3	0.13	NSR 0.15	
0										62	64	2	0.12	NSR	
										89	90	1	0.26	NSR	
Т										103	106	3	0.79	0.15	106m EOH
									incl	103	105	2	1.15	0.25	
RED BRICK ROAD	Bound to Rise	25AYRC089	RC	411261	6778459	456.2	-60	200	82	25	30	5	0.14	NSR	
										48	52	4	9.21	1.13	

REA			Collar	Location an	d Orientation	ì				Int	tersect	ion >0.1g/	't Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	To	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
									incl	48	49	1	35.30	4.15	Repeat Assay: 33.73g/t Au in basalt
	Bound to Rise	25AYRC090	RC	411281	6778495	456.5	-60	200	118	47	49	2	3.33	0.74	
	Bound to Rise	25AYRC091	RC	411228	6778471	454.5	-60	200	82	24	36	12	0.17	0.16	4m composites
	Bound to Rise	25AYRC092	RC	411237	6778508	454.4	-60	200	148	57	60	3	1.14	1.00	
	Highland Chief	25AYRC093	RC	411310	6778709	453.6	-60	200	64	25	27	2	0.21	0.73	& 365ppm Cu Mafic schist
	rigitalia Cillei	25A1RC095	RC	411310	6778709	455.6	-60	200	04	37	38	1	0.21	0.73	& 388ppm Cu. Basalt hosted
										42	48	6	0.12	1.38	& 2010ppm Cu. Basalt hosted
													-		
	Highland Chief	25AYRC094	RC	411323	6778743	451.3	-60	200	100	51	64	13	0.24	1.84	& 2850ppm Cu. Tonalite hosted
										89	90	1	0.23	0.79	& 1469ppm Cu. Basalt hosted
	Queen of Sheba	25AYRC095	RC	410389	6779061	443.3	-60	195	76	39	40	1	0.53	0.24	Qz Vein - Queen of Sheba Lode
				44,0000	0770400	440.0									
	Queen of Sheba	25AYRC096	RC	410399	6779100	442.9	-60	195	112						NSR
				410080	6779138	443.0									
	Queen of Sheba	25AYRC097	RC	410000	0770100	440.0	-60	195	76						NSR
	Over an of Oheah	05 AVD0000	DO.	440004	0770404	440.0		405	110						NOD
	Queen of Sheba	25AYRC098	RC	410094	6779181	443.0	-60	195	112						NSR
	Pride of Pindinnie	25AYRC099	RC	410740	6779869	439.0	-60	185	52						NSR
	That of Finantile	20/1110000	110	710/70	5775555	400.0	- 55	100	02						1011
	Pride of Pindinnie	25AYRC100	RC	410746	6779906	438.9	-60	185	88	53	55	2	0.19	NSR	
										75	76	1	0.13	NSR	

AREA			Collar	Location an	d Orientation	l				Int	tersect	tion > 0.1 g/	't Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
RED BRICK ROAD	Pride of Pindinnie	25AYRC101	RC	410830	6779863	439.0	-60	185	52			0	NSR		
	Pride of Pindinnie	25AYRC102	RC	410825	6779894	438.9	-60	185	84	32	36	4	0.20		4m composite
										42	49	7	0.86	0.39	
									incl	42	44	2	2.40	0.38	
lacktriangle															
lacktriangle	George Washington	25AYRC103	RC	410994	6781281	432.9	-60	150	64				NSR		
onal use on	O W h in set	054700404	DO.	44,0000	0704005	400.0	00	450	101	400	100	4	0.44	NOD	
1	George Washington	25AYRC104	RC	410969	6781325	432.9	-60	150	124	102	103	1	0.14	NSR	
Ψ2 	George Washington	25AYRC105	RC	411089	6781328	432.0	-60	225	130	23	25	2	0.55	0.47	
7	Ocorge Washington	20/11/0100	110	411000	0701020	402.0	00	220	100	108	110	2	0.13	0.13	
=													3.22		
90	George Washington	25AYRC106	RC	411130	6781358	432.8	-60	225	100	54	55	1	0.34	1.10	
\succeq															
YELLOW BRICK ROAD	LatL F0	25AYRC107	RC	403915	6780215	458.4	-60	295	184	0	35	35	0.14	NSR	all within granite. Composites to 20m
(I)															in ultramafic adjacent to granite contact + trace
Б										51	52	1	0.11	0.10	qz veining
										124	125	1	0.21	NSR	ultramafic hosted with 5% qz veining
万	LatL F0	25AYRC061	RC	403929	6780251	457.8	-60	295	190	59	66	7	0.42	0.25	Re-entered & extended from 58m to 190m.
٢	Lail FU	25A1KC001	RC	403929	0/00/201	437.8	-60	290	incl	61	62	1	1.36	1.00	ne-cittered & extended from Solii to 190fff.
†									IIICt	01	02	-	1.00	1.00	
	LatL F0	25AYRC108	RC	403953	6780290	455.0	-60	295	187	24	64	40	0.50	0.21	4m Comps & singles
					-				incl	46	47	1	1.11	0.14	
									&	53	58	5	1.19	0.41	
									&	61	62	1	1.20	0.35	

AREA			Collar	Location an	nd Orientation	1				In	tersect	tion > 0.1 g/	′t Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	To	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
										80	91	11	0.72	0.25	
									incl	84	90	6	1.12	0.34	
										104	105	1	0.14	NSR	
										150	153	3	0.18	NSR	
										168	185	17	0.56	0.21	Anomalous W b/w 154-156m (highest 0.11% @ 154-155m), 161-164m (highest 0.16% @161-162m), & 166-167m 0.14%
									incl	174	178	4	1.38	0.33	
	LatL F1	25AYRC109	RC	403856	6780380	458.6	-60	295	82	51	53	2	0.11	0.11	Hosted in granite adjacent to mafic/ultramafic contact
	LatL F1	25AYRC110	RC	403880	6780367	459.3	-60	295	136	58	59	1	0.30	0.22	
	LatL F1	25AYRC111	RC	403852	6780376	459.4	-60	240	184	36	37	1	0.12	0.11	Hole targetting contact and within ultramafic. Weak intercept hosted in mafic, adjacent to contact with granite
	LatL F1	25AYRC112	RC	403934	6780476	458.0	-60	295	112	40	44	4	0.18	NSR	4m composite
										51	52	1	0.10	NSR	
										56	75	19	1.20	0.56	Mineralised zone high potassium
									incl	56	62	6	2.07	0.91	
									&	65	68	3	1.58	0.59	
									&	72	73	1	1.09	NSR	
										80	82	2	0.24	NSR	Mineralised zone high potassium
										93	94	1	0.14	0.15	Mineralised zone high potassium
										104	105	1	0.10	NSR	
	LatL F1	25AYRC113	RC	403955	6780466	458.3	-60	295	160	20	24	4	0.13	NSR	4m composite
	1	1	1	1	1		. —				_			1	

69

70

0.12

0.48

AREA			Collar	Location an	d Orientation					Int	tersect	tion >0.1g/	′t Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	says	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
										101	125	24	1.57	0.84	
									incl	104	115	11	3.05	1.65	
									incl	105	110	5	5.21	2.60	
										135	146	11	0.34	0.14	
										148	150	2	0.13	0.11	
	LatL F1	25AYRC114	RC	403947	6780518	457.8	-60	295	112	57	65	8	0.46	0.24	High potassium
										70	71	1	0.19	0.15	
										102	103	1	0.16	NSR	
										111	112	1	0.12	NSR	EOH
	LatL F1	25AYRC115	RC	403967	6780551	457.8	-60	295	124	28	40	12	0.14	0.10	4m composites
										48	50	2	0.23	NSR	
										57	58	1	0.24	NSR	
										79	81	2	0.14	0.18	
										86	89	3	0.25	0.14	High potassium
										92	93	1	0.35	0.62	High potassium
	LatL F1	25AYRC116	RC	403992	6780580	457.8	-60	295	184	24	28	4	0.21	0.10	4m composite
										32	36	4	0.29	NSR	
										126	130	4	0.24	0.10	
										148	152	4	0.17	0.16	
										171	172	1	0.16	NSR	
										174	175	1	0.24	NSR	
	LatL F1	25AYRC117	RC	403991	6780631	457.8	-60	295	202	28	36	8	0.23	0.12	4m composites
										76	77	1	0.63	0.13	

P
Ф
<u>\$</u>
7
a
\sqsubseteq
9
4
Φ
<u>P</u>
7
1
+
I

AREA			Collar	Location an	d Orientation					Int	ersect	ion >0.1g/	t Au & >0.1	g/t Ag	Comments
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip	Azimuth	Depth	From	То	Length	Ass	ays	
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
										86	87	1	0.11	0.14	
										111	113	2	0.34	NSR	
										119	120	1	0.14	0.10	
										123	135	12	0.96	0.32	
									incl	131	135	4	2.69	1.03	
\equiv										140	141	1	0.19	0.10	
<u></u>										142	143	1	0.48	0.20	
										157	158	1	0.16	0.12	
use										175	176	1	0.29	0.21	
8										188	190	2	0.17	0.17	
\supset										196	197	1	0.17	NSR	
										199	200	1	0.39	0.30	
personal															
Ξ	Queen of Poland	25AYRC118	RC	403617	6781444	455	-60	240	94				ASSAYS	PENDING	
7	Queen of Poland	25AYRC119	RC	403657	6781378	455	-60	240	82				ASSAYS	PENDING	
	Landed at Last	25AYRC120	RC	403672	6781316	455	-60	240	172				ASSAYS	PENDING	
¥ 7	Landed at Last	25AYRC121	RC	403737	6781240	455	-60	240	220				ASSAYS	PENDING	
(I)	Landed at Last	25AYRC122	RC	403777	6781173	455	-60	240	160				ASSAYS	PENDING	
Б —	Landed at Last	25AYRC123	RC	404089	6780894	455	-60	240	154				ASSAYS	PENDING	
	Landed at Last	25AYRC124	RC	404143	6780583	455	-60	240	190				ASSAYS	PENDING	
OF	Landed at Last	25AYRC125	RC	404192	6780618	454	-60	240	196				ASSAYS	PENDING	
ρ	Landed at Last	25AYRC126	RC	404247	6780456	454	-60	240	178				ASSAYS	PENDING	
-	Landed at Last	25AYRC127	RC	404275	6780379	454	-60	240	148				ASSAYS	PENDING	
	Bonaparte	25AYRC128	RC	404339	6780252	455.3	-60	240	94				ASSAYS	PENDING	
	Bonaparte	25AYRC129	RC	404457	6780129	456.9	-60	240	100				ASSAYS	PENDING	
	Golden Treasure Deeps	25AYRC130	RC	404488	6779755	457	-60	240	124				ASSAYS	PENDING	
	Golden Treasure Deeps	25AYRC131	RC	404528	6779738	457	-60	240	130				ASSAYS	PENDING	

AREA	Collar Location and Orientation						Intersection >0.1g/t Au & >0.1 g/t Ag			Comments					
	Prospect	Hole_ID	Туре	MGA_E	MGA_N	RL	Dip Azim	Azimuth	Depth	From	То	Length	Assays		
								(Mag)	(m)	(m)	(m)	(m)	Au (g/t)	Ag (g/t)	
	Golden Treasure Deeps	25AYRC132	RC	404554	6779704	456.9	-60	240	124					PENDING	
	Golden Treasure Deeps	25AYRC133	RC	404735	6779419	457.3	-60	240	124				ASSAYS	PENDING	
	Golden Treasure Deeps	25AYRC134	RC	404769	6779441	457.1	-60	240	142				ASSAYS	PENDING	
	Golden Treasure Deeps	25AYRC135	RC	404780	6779482	456.5	-60	240	130				ASSAYS	PENDING	
_				-		455.0									
RED BRICK ROAD	Pennyweight Point	25AYRC136	RC	411830	6779573	455.0	-60	300	184				ASSAYS	PENDING	
	Pennyweight Point	25AYRC137	RC	411703	6779596	455.0	-60	300	94				ASSAYS	PENDING	
)	Pennyweight Point	25AYRC138	RC	411769	6779563	455.0	-60	300	136				ASSAYS	PENDING	
2	Pennyweight Point	25AYRC139	RC	411834	6779551	455.0	-60	300	190				ASSAYS	PENDING	
5	Pennyweight Point	25AYRC140	RC	411672	6779637	455.0	-60	300	106				ASSAYS	PENDING	
_	Pennyweight Point	25AYRC141	RC	411686	6779626	455.0	-60	300	106				ASSAYS	PENDING	
5	Pennyweight Point	25AYRC142	RC	411708	6779614	455.0	-60	300	112				ASSAYS	PENDING	
<u> </u>	Pennyweight Point	25AYRC143	RC	411690	6779606	455.0	-60	300	106				ASSAYS	PENDING	
1081	Pennyweight Point	25AYRC144	RC	411638	6779611	455.0	-60	300	94					PENDING	
	Pennyweight Point	25AYRC145	RC	411673	6779593	455.0	-60	300	142				ASSAYS	PENDING	
	Pennyweight Point	25AYRC146	RC	411649	6779583	455.0	-60	300	112				ASSAYS	PENDING	
	Pennyweight Point	25AYRC147	RC	411683	6779564	455.0	-60	300	106				ASSAYS	PENDING	
5	Pennyweight Point	25AYRC148	RC	411879	6779553	455.0	-60	300	262				ASSAYS	PENDING	

Appendix Two – JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 All of the samples being reported on in this release were collected utilising industry standard Reverse Circulation (RC) drilling techniques. All of the RC drilling was undertaken by Ranger Drilling, a fully owned subsidiary of the Perenti Diversified Mining Services Group (ASX: PRN) Reverse circulation (RC) sampling was carried out using a rig mounted METZKE Static Cone Splitter. Sampling was conducted by the drill offsiders on the drill rig and checked at the end of each rod (6 metres) by both the drilling contractor and the site supervising geologists to ensure that the sample ID's matched the interval that was intended to be represented by that sample ID. No issues were seen or noted by the Competent person during the entire drilling campaign. These samples are kept onsite in a secure location available for further analysis if required. All RC samples were sieved and washed to ensure samples were taken from the appropriate intervals. The presence of quartz veining +- sulphide presence +- alteration was used to determine if a zone was interpreted to be mineralised. Sampling was additionally based on geological observations of interpreted intervals. The quality of the sampling is industry standard and was completed with the utmost care to ensure that the material being sampled, can be traced back to the interval taken from the drill hole for RC chips. Samples submitted for analysis weighed on average 3kg. All samples described in this announcement have been submitted to Intertek Laboratory in Kalgoortie for initial sample preparation prior to shipment to Intertek Perth for final analysis.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg	All of the drilling described in this release was completed utilising industry standard RC drilling techniques.

	core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC drilling used a SREPS 760 downhole face sampling hammer with a nominal bit size of 5.5inch (125mm). All of the drilling was undertaken by Ranger Drilling using a DRA600 Reverse Circulation Drill Rig with a Sullair 1350cfm/500psi on board compressor mounted on a MAN TGA 41.480 8WD truck combined with an 1150cfm/350psi OX Hurricane Booster /Sullair Auxilliary Compressor mounted on MAN 41.480 8WD truck.
Drill sample necovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample recovery size and sample conditions (dry, wet, moist) were recorded. Drilling with care (e.g. clearing hole at start of each rod, regular cyclone cleaning) if water encountered to reduce incidence of wet samples. No relationship was displayed between recovery and grade nor loss/gain of fine/course material.
PLOGGING Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All recovered samples from RC have been geologically logged to a level where it would support an appropriate Mineral Resource Estimate, mining studies and metallurgical test work. Logging was qualitative based on the 1 metre samples derived from RC drilling. Representative sample was collected in plastic chip trays which are securely stored on-site for future reference. Logging was qualitative based on geological boundaries observed. 100 percent of the drillholes were logged to capture all relevant geological units, structures and intersections.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including 	 RC chip samples were cone split from the drill rig into individual 1m green sample bags pre-numbered for hole depth and neatly laid out in 20m rows adjacent to the drill collar. A 1m sample was collected at the cone splitter on the RC rig in a pre-numbered calico bag. All RC samples were dry. All recoveries were >90%. Field duplicates, blanks and CRM standards were inserted every 25 samples. GEOSTATS standards or CRMs of 60 gram charges of G919-3 (Au grade of 0.87ppm Au), 916-2 (Au grade of 1.98ppm Au) and 918-2 (Au grade of 1.43ppm Au) and 919-8 (Au grade of 0.57ppm Au) were used in alternating and sporadic patterns at a

	for instance results for field duplicate/second-half sampling. • Whether sample sizes are appropriate to the grain size of the material being sampled.	 ratio of 1 QAQC sample in 25 samples submitted. Samples are dried (nominal 110 degrees C), crushed and pulverized to produce a homogenous representative sub-sample for analysis. All samples are pulverised utilising Intertek preparation techniques. The Competent Person is of the opinion RC drilling and sampling method are considered appropriate for the delineation of gold mineralisation.
Quality of as data and laboratory to	and laboratory procedures used and whether the	 Gold and multi-element analyses were undertaken by Intertek Genalysis in Perth, using routine fire assay and multi element analysis by FA50/OE04 and 4A/MS48 This near-full digest is considered sufficient for this stage of exploration and the weathered nature of the samples. Gold analysis was undertaken with 50-gram Fire Assay with OES finish. The detection limit for gold via this method is 5ppb (0.005ppm). Laboratory QA/QC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the inhouse procedures. QC results (blanks, duplicates, standards) were in line with commercial procedures, reproducibility and accuracy. Multi-Element analyses were carried out combining a four-acid digestion with ICP-MS instrumentation. A four-acid digest is performed on 0.25g of sample to quantitatively dissolve most geological materials. Analytical analysis performed with a combination of ICP-OES & ICP-MS. Element analyses include: Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, and Zr. The analytical method employed is appropriate for the styles of mineralisation and target commodity present. No geophysical tools, spectrometers, handheld XRF instruments were used. QAQC analysis shows that the lab performed within the specifications of the QAQC protocols. No external laboratory checks have been completed.
Verification sampling ar assaying	,	 No umpire analysis has been performed. Data was collected on to standardised templates in the field and data cross checks were performed verifying field data and assay results. No adjustment to the available assay data has been made.

	 data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	For all intercepts, the first received assay result is always reported.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars are picked up at the end of each hole by the site supervising geologist using a handheld Garmin GPS. Accuracy is +/-5m. GDA94 Zone 51 grid system was used. Collars will be picked up by a qualified surveyor using a DGPS (Trimble S7or equivalent). The surveyed collar coordinates are sufficiently accurate and precise to locate the drillholes.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drillholes were designed and drilled to test the validity of historical drilling information and not for Mineral Resource estimation and classification purposes. No mineral classification is applied to the results at this stage. 2m/4m composite and individual 1m interval samples and results described in this announcement were collected from a rig mounted cone splitter.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drilling was designed as perpendicular as possible to the interpreted structure that hosts mineralisation to avoid introducing any bias. The drilling orientation and the orientation of key mineralised structures has not introduced a bias. All drillholes were downhole surveyed using a north seeking Gyro survey tool.
Sample security	The measures taken to ensure sample security.	 The chain of supply from rig to the laboratory was overseen by a contract geologist. At no stage has any person or entity outside of the contract geologist, the drilling contractor, contract courier, and the assay laboratory come into contact with the samples. Samples were delivered by Arika field personnel and/or it's contractors to the Intertek laboratory in Kalgoorlie for initial sample preparation then to Maddington for analysis.

Audits or reviews	The results of any audits or reviews of sampling techniques	• No external audit of the results, beyond the laboratory internal QAQC measures,
	and data.	has taken place.
		• QA/QC data is regularly reviewed by ARI and the company's Database Manager,
		ERM, and results provide a high-level of confidence in the assay data.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The drilling being reported on in this announcement was undertaken within Mining Leases, M39/84; M39/407; M39/839; M39/410. Arika operates within a Joint Venture Agreement with Nex Metals Exploration (NME) and holds 80% with NME holding the remaining 20%. Please refer to announcement "Metalicity Achieves Earn-In On The Kookynie & Yundamindra Gold Projects" dated 21st December 2023. No impediments exist to obtaining a license to operate over the listed tenure at the time of reporting.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Arika Ltd has completed a review of historical data and made corrections to previously supplied data from the JV partner NME. The Yundamindra areas has been subject to multiple phases of exploration since discovery of gold before 1899. Further small-scale mining occurred until the 1940's. Exploration activities between the late 1970's into the early 1980's was completed by Pennzoil Australia, Kennecott Exploration with Hill Minerals, and Picon Exploration. Mt Burgess Gold Mining Company undertook significant exploration drilling to generate resource estimates for the western and eastern lines of mineralisation in 1988 and 1989 respectively. Sons of Gwalia entered into a JV with Mt Burgess in the mid 1990's which lasted until 1999 then held the project tenements outright until 2003 which included exploration activities, a re-optimisation study in 1997 on part of the Western Line of mineralisation, as well as further resources estimates. Saracen Gold held the project tenements from 2006 until 2010 until it entered into a

		JV with NME. NME controlled the project outright from 2013 until entering into a JV with Arika in 2019.
Deposit type, geological setting and style of mineralisation. Deposit type, geological setting and style of mineralisation.	Deposit type, geological setting and style of mineralisation.	 Yundamindra: The Yundamindra Project lies within the Murrin-Margaret sector of the Leonora- Laverton area; part of the north-northwest to south-southeast trending Norseman-Wiluna Greenstone Belt of the Eastern Goldfields Province of the Yilgarn Craton.
		 The Murrin-Margaret sector is dominated by an upright, north to north-northwest trending asymmetric regional anticline (Eucalyptus Anticline) centred about the Eucalyptus area. The western limb of the regional anticline has been intruded by granitoids (Yundamindra area). Strike-slip faulting is dominant along the eastern limb.
		 The Yundamindra Project encompasses zones of gold mineralisation occurring along the margin of a regional scale hornblende-granodiorite batholith which intruded mafic lithologies. The contact is sub-divided into two 'lines' of mineralisation, western and eastern.
		 The Western Line consists of a north-northwest trending zone of generally continuous, east dipping quartz reefs and quartz filled shears in granitoids, near the contact between a large hornblende granodiorite pluton and a thin remnant greenstone succession. The lode generally strikes parallel to a regional north- northwest schistosity in the mafic succession immediately to the west. Folding and faulting has dislocated the continuity of the lode in places and produced domal structures.
-) -		The Eastern Line encompasses the eastern portion of the arcuate granodiorite/greenstone contact with gold mineralisation associated with quartz veining within the mafic succession and within quartz vein/stockwork within granodiorite.
		 All exploration targets, prospects and deposits are interpreted as orogenic shear- hosted exploration targets for gold mineralisation.

Drill hole • A summary of all information material to the understanding of the exploration results including a Information holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar

- tabulation of the following information for all Material drill
 - o dip and azimuth of the hole
 - o down hole length and interception depth
 - o hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

- All discussion points are captured within the announcement above.
- For RC drilling, dip and azimuth data is accurate to within +/-5° relative to MGA UTM grid (GDA94 Z51).
- For all drilling, down hole depth and end of hole length is accurate to with +/- 0.2m.
- All RC and diamond drillholes completed by Arika were surveyed downhole using a north seeking Gyro tool supplied by the drilling contractor.
- A collar table is supplied in the appendices.
- A summary of significant intercepts table is supplied in the Appendices.

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.

- Intercepts are reported as down-hole length on 2m/4m composites and/or 1 metre individual samples from RC drilling.
- Gold intercepts have been calculated using the weighted average method for all intervals reporting >0.1g/t Au.
- Intercepts are reported as down-hole lengths and average gold intercepts are calculated with a 0.1 g/t and 0.5 g/t Au lower cut, no upper cut and <4m internal dilution.
- Intercepts were defined geologically based on an interpretation of the target zone at a given location.
- Length weighted grades were then calculated based on a sample returning an assay value of greater than 0.1 g/t Au for the low-grade envelope and internal zones of greater than 0.5 g/t Au and 5.0 g/t Au. Generally, no more than 4 metres of internal material that graded less than 0.1 g/t Au was included except where a Raft or 'Horse' of lower grade country rock was interpreted as being within the targeted lode zone as defined by adjacent holes.
- Intervals were based on geology and no top cut off was applied.

		No metal equivalents are discussed or reported.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 All holes reported here are designed to intersect the target zone/mineralisation orthogonal to both strike and dip. The downhole length is therefore close to the true thickness.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 A selection of appropriate maps and sections are included within the body of the report. Please see main body of the announcement for the relevant figures showing the drillholes completed.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results and all plans are presented in a form that allows for the reasonable understanding and evaluation of the exploration results being announced.
Other substantive Dexploration data D	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 The area has had significant historical production recorded and is accessible via the MINEDEX database. All material results from geochemical, geophysical, geological mapping and drilling activities related to prospects across the Yundamindra Gold Project have been disclosed.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not 	 Follow up exploration activities will include but not limited to RC and diamond drilling and planned for the remainder of 2025 pending outcomes from the drilling results and ongoing interpretation. Diagrams pertinent to the areas in question are supplied in the body of this announcement.

commercially sensitive.	

