

ASX RELEASE: 6 May 2019

METALICITY FARMS INTO PROLIFIC, KOOKYNIE & YUNDAMINDRA GOLD PROJECTS, WA

HIGHLIGHTS

• Through a Farm-In Agreement with Nex Metals Exploration Ltd ("Nex"), Metalicity gains access to the prolific Kookynie and Yundamindra Gold districts in the Eastern Goldfields, WA.

Kookynie

- Hosts circa 50koz Gold of pre-JORC 2012 Mineral Resources historic production is circa 360koz of Gold.
- Excellent exploration upside in current resources and additional lines of mineralisation.
- Kookynie has not been subject to any intense exploration over last 25 years.
- Initial work is to drill and extend/ upgrade six current resource targets to JORC 2012 compliancy.

Yundamindra

- Significant mineralisation identified at Queen of Poland, Landed at Last and Pennyweight Point.
- Laminated quartz vein with fine visible gold identified during due diligence at Queen of May workings.
- Nex Metals Explorations (ASX: NME) (NEX) is progressing resolution of the plaints on the Yundamindra tenements.

The Plan

- Metalicity, as part of the Farm-In, to initially spend a minimum \$500,000 within 12 months.
- A total of \$5 million spend within and up to 5 years to earn 51% of the Projects inclusive of the initial spend and time duration.
 - \circ $\;$ At that point, joint venture is formed between the parties.
- Excellent mining jurisdiction and infrastructure.
- Exploration and drill planning well advanced.
- Seek to develop a significant resource and reserve base from which to build sustainable mining operation.
- MCT Consolidated Cash of \$1.1M at March 31, 2019.

The Deal

- MCT to spend minimum \$500,000 before withdrawal and \$5 million over up to 5 years to earn 51% of the Projects.
- Upon 51% earn in completion, NME and MCT will form a co-contributing joint venture to develop the Kookynie and Yundamindra Projects.

Metalicity Limited (ASX: MCT) ("**MCT**" or "**Company**") is pleased to announce it has entered a farm-in agreement with Nex Metals Explorations Ltd (ASX: NME) ("**Nex**") for the Kookynie and Yundamindra Projects in the Eastern Goldfields, Western Australia. Exploration to commence during May with drilling planned for June quarter. The quick start is due to a detailed evaluation and planning process and the on the ground experience of the Company's senior management.

Metalicity Limited ASX Code: MCT ABN: 92 086 839 992 **Of the agreement Metalicity CEO, Mat Longworth, said,** *"This deal provides us with access to one of the Eastern Goldfields' last remaining underexplored, significant production centres. The team at Metalicity have significant experience in this region with over 30 years of combined district experience in successful exploration including the Raleigh and Sunrise Dam mines.*

"These projects provide Metalicity with the opportunity to define significant gold resources, building off historic exploration, by employing modern techniques and science."

"Exploration will commence during May, a fast start due to the experience of Metalicity's team and the cooperative work undertaken with NEX's on the ground team."

"Through a results-based exploration programme across both projects our goal is to develop a significant resource and reserve base, from which to eventually commence a sustainable mining operation focusing on grade and margin."

"This is a very exciting development, Metalicity's stated three-part strategy of near-term production assets, the very large Admiral Bay zinc asset through our holding in Kimberley Mining and the extensive early stage land holding the Paterson Province and Fraser Range is coming together."

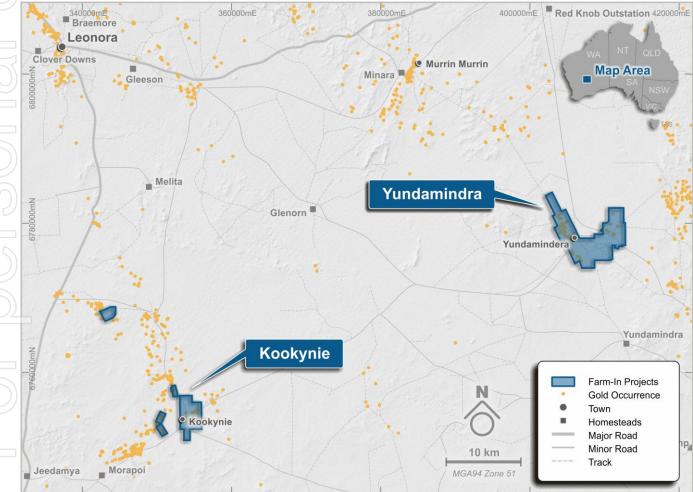


Figure 1 – Kookynie and Yundamindra Locality Map.

The Kookynie Gold Project

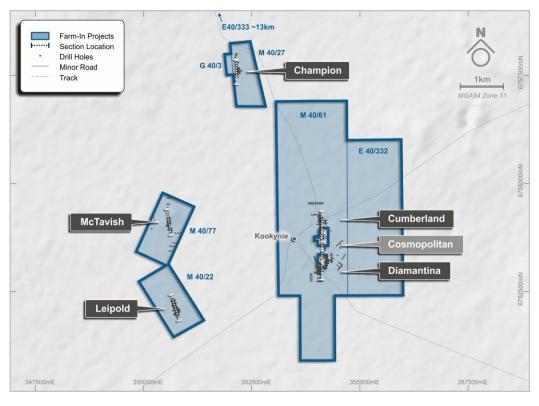
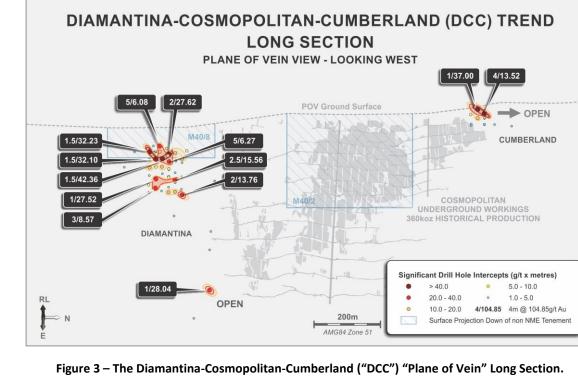


Figure 2 – Kookynie Locality Map.

The Project lies approximately 180 km north of Kalgoorlie, 50 kms south of Leonora and approximately 25 kms from the bitumen Goldfields Highway linking Kalgoorlie to Leonora in the Eastern Goldfields of Western Australia.

Located within the Keith-Kilkenny Tectonic Zone, the project hosts the historical mining centers of McTavish, Leipold, Champion, Altona, and the prolific Diamantina-Cosmopolitan-Cumberland (DCC) trend.


The historic Cosmopolitan Gold mine produced 360,000 ounces of gold from discovery in 1895 to 1922. During the early part of last century, the Cosmopolitan ranked as one of the largest and most profitable gold mines in Western Australia.

The Cosmopolitan Mine is untested by modern exploration, in particular the potentially rich plunge extensions of the main mineralised shoots. Drill testing of the Cumberland and Diamantina depth extensions is very shallow. The "plane of vein" long section below shows the historical underground workings of the Cosmopolitan Gold Mine and the strike extents being the Cumberland and Diamantina Mines. This presents an excellent walk up drill target for MCT.

The continuous east dipping narrow vein structure, with south plunging mineralised shoots controlled by east west structures and a strike length of up to 400m, is similar to the Raleigh mine at Kundana. At Kookynie the crosscutting structures are mineralised making an excellent exploration target. The best defined of these mineralised structures was mined at the historic Altona mine to the east of Cosmopolitan.

Mining lease M40/344, M40/342 and M40/02 covering the mined-out portions of Cosmopolitan are held by another party and are excised from the project and from the farm-in agreement. Mining lease M40/08 and L40/08 covering the old mined out Diamantina open pit is held by a third party, however the easterly dipping mineralisation crosses the tenement boundary into the project tenements at approximately 65 metres depth.

Despite the lack of drill testing of the Cosmopolitan Mine, drill hole intercepts at Diamantina delivered grades approaching one ounce per tonne, in line with production records from the Cosmopolitan. Notably, the intercept of 1m @ 28.04 g/t Au from 338.5m in NXDD003 illustrates the down plunge potential of this prospect. Similarly, Cumberland presents near surface mineralisation of, for example, 3m @ 44 g/t Au from 18m in KOYC106. MCT's exploration will target these high-grade shoots with a combination of RC and Diamond drilling.

MCT will explore the DCC trend, drill testing with RC and Diamond drilling, to extend the known mineralisation and confirm existing mineralisation.

The Champion Gold Mining Centre, some 4 kms north-nor-west of the Cosmopolitan Mine, hosts a pre-2012 JORC compliant (JORC2004) resource of 117kt @ 3.8g/t Au for 14,000 ounces (please refer to ASX Announcement by NME dated 1st August 2011 "*Update on activities*").

The "plane of vein" long section (Figure 4) hosts significant intercepts such as 7m @ 164.84 g/t Au from 101m DVRC0074 illustrating the potential of the down plunge, which was not adequately drill tested previously.

Historical drilling shown on the long section is generally depth limited with most drill holes shallower than 40 metres. The prospective and underexplored nature of the prospect holds the potential for significant mineralisation at relatively shallow levels, which may fall in to future open pits. In addition, the high grades justify testing the deeper plunge extents of this mineralisation. Most drilling dates to the late 1980s and requires confirmation work to be included in future mineral resource estimates.

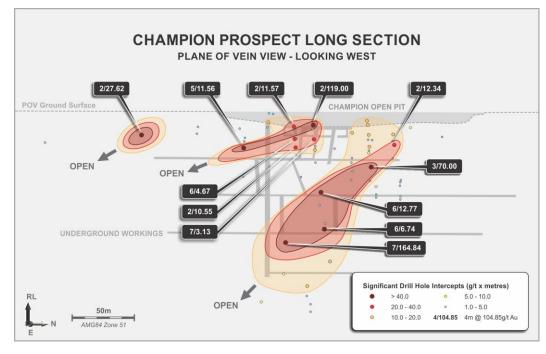


Figure 4 – The Champion "Plane of Vein" Long Section.

As part of the farm-in agreement, the Company has earned the right to explore the McTavish Gold Mining Centre, some 3.6 kms east of the Cosmopolitan area.

The McTavish project hosts a pre-2012 JORC compliant resource of 79kt @ 2.2 g/t Au for 6,000 ounces (please refer to ASX Announcement by NME dated 1st August 2011 "*Update on activities*"). The prospect contains limited drilling below 40 metres and holds open down plunge extensions. These extensions are highly-prospective for gold mineralisation returning high-grade results, for example 3m @ 52.33 g/t Au from 23m in CRC136.

Exploration will extend and confirm the deeper mineralisation by targeting the high grade plunging mineralised shoots.

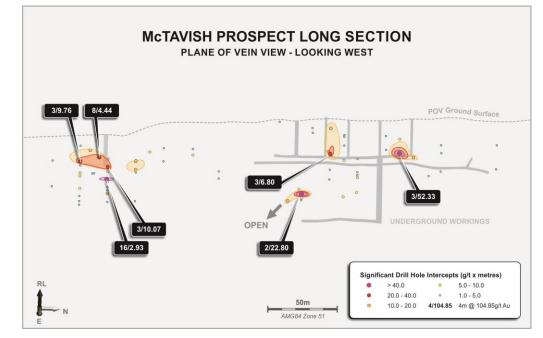


Figure 5 – The McTavish "Plane of Vein" Long Section.

Figure 6 Quartz pyrite and arsenopyrite waste from McTavish main Shaft

Metalicity also holds the rights to explore the Leipold Gold Mining Centre, located 3.8 kms east south east of the Cosmopolitan Mine, which hosts a pre-JORC 2012 compliant (JORC 2004) resource of 530kt @ 2 g/t Au for 33,000oz (please refer to ASX Announcement by NME dated 1st August 2011 "Update on activities").

Similar to the other mineralised prospects, drilling is shallow and has not tested the depth extensions of mineralisation. Figure 8 shows significant mineralisation (3m @ 107.023 g/t Au from 32m in LQRC0026). The shallow depths of drilling and the southerly plunge are consistent with other prospects in the district.

The Company believes the test pit mined at Leipold in the late 1980's missed most of the mineralisation as it appears directed at a previously unrecognised paleochannel carrying mineralisation.

Figure 7 Leipold Trial Pit Paleochannel

MCT interprets that the McTavish and Leipold structures hold the potential to host mineralisation over 1.8 kms between the two resources. While transported cover obscures the potential mineralisation along strike, the Company will test this prospective structure where crosscutting structures are interpreted.

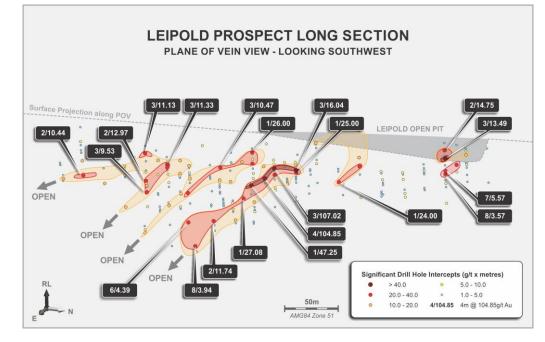


Figure 8 – The Leipold "Plane of Vein" Long Section.

The Project holds an exceptional opportunity to apply methodical, resource development programmes that will seek to confirm and significantly extend the known mineralisation.

405000mE 410000mE Ν 2km LANDED MGA94 Zone 51 AT LAST 3/15.75 5/13.21 8/7.41 GEORGE WASHINGTON 9/50.21 6/7.54 3/13.43 9/4.80 5/16.20 7/10.61 PENNYWEIGHT POINT 11/6.06 2.95/18.08 7/6.06 10/9.99 M 39/84 2/24.30 14/18.45 7/8.61 MAORI QUEEN 5/21.11 M 39/839 **GOLDEN TREASURE** 3/17.04 **BOUND TO RISE** M 39/406 M 39/410 M 39/274 M 39/840 QUEEN OF MAY P 39/5156 2/39.50 M 39/408 M 39/409 Farm-In Projects 8/7.41 8m @ 7.41g/t Au M 39/407 **Drill Holes** P 39/5989 Minor Road Track

The Yundamindra Gold Project

The Yundamindra Gold Project is located 65 kms south east of Leonora and 65 kms east of Kookynie:

Figure 9 – Yundamindra Locality Map.

The Yundamindra Project consists of nine granted mining leases, which the Company will hold the rights to explore. Nex is well advanced in dealing with the plaints affecting these tenements and the Company looks forward to commencing exploration on this Project.

The project hosts significant historical production of 74kt @ 19.3 g/t Au for 45,000 ounces. Significant intercepts from the Prospects within the Project include:

- Bound to Rise 2m @ 7.21 g/t Au from 30 m in HC007
- Pennyweight Point 8m @ 56.36 g/t Au from 44 m in PV095
- Golden Treasure North 1m @ 48.1 g/t Au from 12 m in TDN18
- Queen of the May 2m @ 39.49 g/t Au from 31 m in QMN5, &
- Landed at Last 2m @ 23.29 g/t Au from 30 m in LN11

Figure 10 Epidote quartz veined and red rock altered granite sample from Yundamindra shaft waste dumps

Similar to the Kookynie Project, the Yundamindra Project has only experienced shallow drilling and offers an opportunity for MCT to confirm and extend the known mineralisation occurrences within this area. The company has identified immediate drill targets at Penny Weight Point, Washington, Polish Queen and Maori Queen prospects. Field work has identified the presence of inverted paleochannels obscuring mineralised trends at the Yundamindra West line of lode.

Figure 11 Five Stamp Battery at Yundamindra West

Forward plan

Across both projects, MCT will be rolling out an exploration programme with a modern methodical approach.

The key exploration focus will be the expansion and confirmation of existing mineralization, especially at depth, as most of the current drilling is less than 50 metres at all prospects. The unique granite and intrusive related mineralisation identified at both Yundamindra and Kookynie provide a focus on this previously poorly understood mineralisation style.

The Company senior management has decades of experience exploring for gold in the Eastern Goldfields and will apply state of the art mineralisation models and techniques alongside rigorous drill testing.

The Deal

The deal structure for the NME – MCT farm-in agreement is as follows:

- Initial Placements:
 - An initial placement amount of NME's shares, taken by MCT for \$50,000 upon execution of the agreement at a 20-day VWAP per NME share preceding the date of execution, plus a premium of 20%.
 - A second initial placement of NME shares to MCT, 6 months post the execution date of the agreement for a further \$50,000 based on a 20-day VWAP preceding the 6-month anniversary.
- 51% Earn In:
 - An initial spend of minimum \$500,000 to drill test the Projects within and up to 12 months from date of the agreement execution.
 - A total of \$5 million spend within and up to 5 years to earn 51% of the Projects inclusive of the initial spend and time duration.
 - At that point, a joint venture is formed between the parties.

Metalicity has the right to withdraw from the farm-in at the completion of the initial \$500,000 spend and at any time proceeding that event.

Overall, MCT and NME see the agreement as an opportunity to unlock the potential of the Kookynie and Yundamindra Projects and realise the value through methodical, results driven exploration with the aspiration of developing a revenue producing sustainable asset.

The initial focus of exploration will be to extend and confirm the existing mineralisation to allow estimation of new JORC 2012 compliant resources and to effectively explore the significant targets identified during due diligence.

ENQUIRIES

Investors

Mat Longworth CEO +61 8 9324 1053 mlongworth@metalicity.com.au

Investor Relations

David Tasker/ Colin Jacoby Chapter One Advisors +61 433 112 936/ +61 439 980 359 david.tasker@chapteroneavisors.com.au

Competent Person Statement

For the pre JORC 2012 mineral resource statements made (McTavish, Champion and Leipold), please refer to ASX Announcement by NME dated 1st August 2011 "Update on activities" for the Competent Person details. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

Information in this report that relates to Exploration results is based on, and fairly reflects, information compiled by Mr. Jason Livingstone, a Competent Person who is a Member of the Australian Institute of Geoscientists and Australian Institute of Mining and Metallurgy. Mr. Livingstone is an employee of Metallicity Limited. Mr. Livingstone has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Livingstone consents to the inclusion of the data in the form and context in which it appears.

Forward Looking Statements

This announcement may contain certain "forward-looking statements" which may not have been based solely on historical facts, but rather may be based on the Company's current expectations about future events and results. Where the Company expresses or implies an expectation or belief as to future events or results, such expectation or belief is expressed in good faith and believed to have reasonable basis. However, forward-looking statements:

(a) are necessarily based upon a number of estimates and assumptions that, while considered reasonable by the Company, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies;

(b) involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements. Such risks include, without limitation, resource risk, metals price volatility, currency fluctuations, increased production costs and variances in ore grade or recovery rates from those assumed in mining plans, as well as political and operational risks in the countries and states in which the Company operates or supplies or sells product to, and governmental regulation and judicial outcomes; and

(c) may include, among other things, statements regarding estimates and assumptions in respect of prices, costs, results and capital expenditure, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions.

The words "believe", "expect", "anticipate", "indicate", "contemplate", "target", "plan", "intends", "continue", "budget", "estimate", "may", "will", "schedule" and similar expressions identify forward-looking statements.

All forward-looking statements contained in this presentation are qualified by the foregoing cautionary statements. Recipients are cautioned that forward-looking statements are not guarantees of future performance and accordingly recipients are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The Company disclaims any intent or obligation to publicly update any forward-looking statements, whether as a result of new information, future events or results or otherwise.

Appendix One – Significant Intercept Table:

							-			AMG84 Zone 51	South - sample	e mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Kookynie	Champion	DVRC0074	RC	101	108	7	164.84	7m @ 164.84 g/t Au from 101m in hole DVRC0074	1,153.90	352,071	6,757,403	31
Kookynie	Leipold	BLQ012	RC	36	40	4	104.85	4m @ 104.85 g/t Au from 36 m in hole BLQ012	419.40	350,599	6,751,964	39
Kookynie	Leipold	LQRC0026	RC	32	35	3	107.02	3m @ 107.023 g/t Au from 32 m in hole LQRC0026	321.10	350,580	6,751,965	40
Kookynie	Champion	CNRC0005	RC	10	12	2	119.00	2m @ 119 g/t Au from 10m in hole CNRC0005	238.00	352,010	6,757,435	40
Kookynie	Champion	CNRC0011	RC	48	51	3	70.00	3m @ 70 g/t Au from 48m in hole CNRC0011	210.00	352,025	6,757,480	37
Kookynie	McTavish	CRC136	RC	23	26	3	52.33	3m @ 52.33 g/t Au from 23m in hole CRC136	157.00	350,436	6,753,990	41
Kookynie	Cumberland	KOYC106	RC	18	21	3	44.00	3m @ 44 g/t Au from 18m in hole KOYC106	132.00	353,897	6,753,980	41
Kookynie	Champion	KKRC0004	RC	70	76	6	12.77	6m @ 12.77 g/t Au from 70m in hole KKRC0004	76.60	352,040	6,757,437	35
Kookynie	Champion	CNRC0042	RC	30	35	5	11.56	5m @ 11.56 g/t Au from 30m in hole CNRC0042	57.80	351,999	6,757,380	38
Kookynie	Champion	CNRC0071	RC	21	23	2	27.62	2m @ 27.62 g/t Au from 21m in hole CNRC0071	55.20	351,979	6,757,300	39
Kookynie	Cumberland	KNP022	RC	24	28	4	13.53	4m @ 13.525 g/t Au from 24m in hole KNP022	54.10	353,912	6,754,000	40
Kookynie	Leipold	LQRC0121	RC	30	33	3	16.04	3m @ 16.037 g/t Au from 30 m in hole LQRC0121	48.10	350,582	6,751,988	40
Kookynie	Leipold	NGRC0021	RC	44	45	1	47.25	1m @ 47.25 g/t Au from 44 m in hole NGRC0021	47.30	350,607	6,751,953	39
Kookynie	McTavish	CRC095	RC	24	40	16	2.93	16m @ 2.93 g/t Au from 24m in hole CRC095	46.90	350,484	6,753,779	40
Kookynie	Cumberland	KOYC057	RC	59	60	1	46.00	1m @ 46 g/t Au from 59m in hole KOYC057	46.00	353,970	6,753,980	37
Kookynie	McTavish	MCTC07	RC	54	56	2	22.80	2m @ 22.8 g/t Au from 54m in hole MCTC07	45.60	350,453	6,753,920	38
Kookynie	Leipold	LQRC0058	RC	17	20	3	13.49	3m @ 13.49 g/t Au from 17 m in hole LQRC0058	40.50	350,534	6,752,119	41
Kookynie	Champion	DVRC0057	RC	104	110	6	6.74	6m @ 6.74 g/t Au from 104m in hole DVRC0057	40.40	352,047	6,757,439	32
Kookynie	Champion	DVRC0079	RC	1	2	1	40.19	1m @ 40.19 g/t Au from 1m in hole DVRC0079	40.20	352,090	6,757,401	4:
Kookynie	Leipold	LQRC0040	RC	28	35	7	5.57	7m @ 5.569 g/t Au from 28 m in hole LQRC0040	39.00	350,538	6,752,121	40
Kookynie	Diamantina	KOYD02	RC	106	108.5	2.5	15.56	2.5m @ 15.562 g/t Au from 106m in hole KOYD02	38.91	354,110	6,753,070	31
Kookynie	McTavish	CRC096	RC	12	20	8	4.44	8m @ 4.44 g/t Au from 12m in hole CRC096	35.50	350,476	6,753,774	42
Kookynie	Leipold	LQRC0094	RC	27	30	3	11.33	3m @ 11.33 g/t Au from 27 m in hole LQRC0094	34.00	350,617	6,751,872	40
Kookynie	Leipold	LQRC0007	RC	20	23	3	11.13	3m @ 11.127 g/t Au from 20 m in hole LQRC0007	33.40	350,610	6,751,847	4:
Kookynie	Leipold	LQRC0081	RC	26	32	6	5.45	6m @ 5.453 g/t Au from 26 m in hole LQRC0081	32.70	350,586	6,751,946	40
Kookynie	Leipold	LQRC0078	RC	35	39	4	8.08	4m @ 8.078 g/t Au from 35 m in hole LQRC0078	32.30	350,588	6,751,969	40
Kookynie	Leipold	LQRC0094	RC	31	35	4	7.90	4m @ 7.898 g/t Au from 31 m in hole LQRC0094	31.60	350,615	6,751,871	40
Kookynie	Leipold	BLQ003	RC	93	101	8	3.94	8m @ 3.938 g/t Au from 93 m in hole BLQ003	31.50	350,659	6,751,917	34
Kookynie	Leipold	LQRC0020	RC	29	32	3	10.47	3m @ 10.467 g/t Au from 29 m in hole LQRC0020	31.40	350,601	6,751,920	4
Kookynie	McTavish	MCTC20	RC	22	25	3	10.07	3m @ 10.07 g/t Au from 22m in hole MCTC20	30.20	350,478	6,753,780	4
Kookynie	Leipold	LQRC0057	RC	11	13	2	14.75	2m @ 14.75 g/t Au from 11 m in hole LQRC0057	29.50	350,528	6,752,117	43
Kookynie	McTavish	MCTC16	RC	16	19	3	9.76	3m @ 9.76 g/t Au from 16m in hole MCTC16	29.30	350,481	6,753,760	4
Kookynie	Leipold	LQRC0009	RC	53	56	3	9.53	3m @ 9.533 g/t Au from 53 m in hole LQRC0009	28.60	350,636	6,751,859	3
Kookynie	Leipold	LQRC0059	RC	27	35	8	3.57	8m @ 3.568 g/t Au from 27 m in hole LQRC0059	28.50	350,547	6,752,125	4
Kookynie	Diamantina	NXDD003	DD	338.5	339.5	1	28.04	1m @ 28.04 g/t Au from 338.5m in hole NXDD003	28.04	354,350	6,753,177	9

Intercepts were originally calculated using assays >1 g/t Au over a minimum length of 1 metre, but no more than 1 metre of <1 g/t Au on intervals greater than 3 metres. This was further refined to report all significant intercepts greater than 10-gram Au metres:

	x	-								AMG84 Zone 51	. South - sample	e mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Kookynie	Champion	CNRC0038	RC	21	27	6	4.67	6m @ 4.67 g/t Au from 21m in hole CNRC0038	28.00	352,008	6,757,420	392
Kookynie	Diamantina	DVRC0189	RC	113	114	1	27.53	1m @ 27.525 g/t Au from 113m in hole DVRC0189	27.53	354,102	6,753,012	312
Kookynie	Diamantina	DVRC0211	RC	141	143	2	13.76	2m @ 13.755 g/t Au from 141m in hole DVRC0211	27.51	354,140	6,753,092	285
Kookynie	Leipold	BLQ014	RC	58	59	1	27.08	1m @ 27.08 g/t Au from 58 m in hole BLQ014	27.10	350,613	6,751,947	382
Kookynie	Leipold	LQRC0061	RC	18	27	9	3.00	9m @ 2.996 g/t Au from 18 m in hole LQRC0061	27.00	350,532	6,752,130	410
Kookynie	Leipold	NGRC0024	RC	76	82	6	4.39	6m @ 4.387 g/t Au from 76 m in hole NGRC0024	26.30	350,646	6,751,905	364
Kookynie	Cumberland	KNP020	RC	25	29	4	6.53	4m @ 6.525 g/t Au from 25m in hole KNP020	26.10	353,945	6,754,040	402
Kookynie	Leipold	LQRC0122	RC	18	19	1	26.00	1m @ 26 g/t Au from 18 m in hole LQRC0122	26.00	350,581	6,751,944	416
Kookynie	Leipold	LQRC0132	RC	42	44	2	12.97	2m @ 12.97 g/t Au from 42 m in hole LQRC0132	25.90	350,633	6,751,857	395
Kookynie	Diamantina	DVRC0202	RC	130.5	133.5	3	8.57	3m @ 8.568 g/t Au from 130.5m in hole DVRC0202	25.70	354,122	6,753,011	294
Kookynie	Leipold	LQRC0121	RC	34	35	1	25.00	1m @ 25 g/t Au from 34 m in hole LQRC0121	25.00	350,580	6,751,988	402
Kookynie	Champion	CNRC0019	RC	28	30	2	12.34	2m @ 12.34 g/t Au from 28m in hole CNRC0019	24.70	352,016	6,757,500	388
Kookynie	Leipold	LQRC0071	RC	43	44	1	24.00	1m @ 24 g/t Au from 43 m in hole LQRC0071	24.00	350,571	6,752,027	394
Kookynie	Leipold	BLQ035	RC	74	76	2	11.74	2m @ 11.74 g/t Au from 74 m in hole BLQ035	23.50	350,641	6,751,928	366
Kookynie	Champion	CNRC0037	RC	12	14	2	11.57	2m @ 11.57 g/t Au from 12m in hole CNRC0037	23.10	352,004	6,757,420	402
Kookynie	Diamantina	KOYD02	RC	95.05	96.05	1	23.02	1m @ 23.015 g/t Au from 95.05m in hole KOYD02	23.02	354,110	6,753,070	330
Kookynie	Diamantina	DVRC0205	RC	112	115	3	7.36	3m @ 7.36 g/t Au from 112m in hole DVRC0205	22.08	354,122	6,753,052	313
Kookynie	Champion	CNRC0012	RC	21	28	7	3.13	7m @ 3.13 g/t Au from 21m in hole CNRC0012	21.90	352,013	6,757,435	392
Kookynie	Leipold	NGRC0023	RC	52	56	4	5.30	4m @ 5.3 g/t Au from 52 m in hole NGRC0023	21.20	350,627	6,751,897	386
Kookynie	Champion	CNRC0039	RC	31	33	2	10.55	2m @ 10.55 g/t Au from 31m in hole CNRC0039	21.10	352,014	6,757,420	385
Kookynie	McTavish	CRC014	RC	20	24	4	5.27	4m @ 5.27 g/t Au from 20m in hole CRC014	21.10	350,613	6,753,470	401
Kookynie	Leipold	BLQ031	RC	40	42	2	10.45	2m @ 10.445 g/t Au from 40 m in hole BLQ031	20.90	350,642	6,751,797	396
Kookynie	Leipold	LQRC0117	RC	27	30	3	6.85	3m @ 6.853 g/t Au from 27 m in hole LQRC0117	20.60	350,560	6,752,044	408
Kookynie	McTavish	DVRC0086	RC	97	100	3	6.82	3m @ 6.82 g/t Au from 97m in hole DVRC0086	20.50	351,801	6,754,900	335
Kookynie	McTavish	MCTC10	RC	24	27	3	6.80	3m @ 6.8 g/t Au from 24m in hole MCTC10	20.40	350,437	6,753,940	413
Kookynie	Leipold	BLQ036	RC	88	91	3	6.53	3m @ 6.533 g/t Au from 88 m in hole BLQ036	19.60	350,659	6,751,867	354
Kookynie	Leipold	BLQ025	RC	25	28	3	6.50	3m @ 6.5 g/t Au from 25 m in hole BLQ025	19.50	350,613	6,751,861	410
Kookynie	Leipold	BLQ034	RC	73	76	3	6.13	3m @ 6.133 g/t Au from 73 m in hole BLQ034	18.40	350,633	6,751,947	367
Kookynie	Leipold	LQRC0083	RC	25	28	3	6.13	3m @ 6.133 g/t Au from 25 m in hole LQRC0083	18.40	350,591	6,751,937	410
Kookynie	Champion	CNRC0006	RC	32	36	4	4.57	4m @ 4.57 g/t Au from 32m in hole CNRC0006	18.30	352,018	6,757,435	384
Kookynie	McTavish	MCTC42	RC	25	27	2	8.95	2m @ 8.95 g/t Au from 25m in hole MCTC42	17.90	350,477	6,753,800	412
Kookynie	Diamantina	DVRC0206	RC	128.5	130	1.5	11.90	1.5m @ 11.903 g/t Au from 128.5m in hole DVRC0206	17.86	354,142	6,753,052	297
Kookynie	Champion	DVRC0080	RC	137	139	2	8.88	2m @ 8.88 g/t Au from 137m in hole DVRC0080	17.80	352,070	6,757,421	275

	-				-				-	AMG84 Zone 51	South - sample	e mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Kookynie	Cumberland	KOYC055	RC	37	42	5	3.52	5m @ 3.518 g/t Au from 37m in hole KOYC055	17.59	353,940	6,753,980	395
Kookynie	Leipold	BLQ029	RC	63	69	6	2.90	6m @ 2.902 g/t Au from 63 m in hole BLQ029	17.40	350,655	6,751,845	375
Kookynie	Leipold	LQRC0133	RC	32	35	3	5.77	3m @ 5.77 g/t Au from 32 m in hole LQRC0133	17.30	350,622	6,751,831	404
Kookynie	McTavish	CRC121	RC	9	13	4	4.30	4m @ 4.3 g/t Au from 9m in hole CRC121	17.20	350,474	6,753,767	425
Kookynie	Leipold	LQRC0080	RC	29	31	2	8.47	2m @ 8.465 g/t Au from 29 m in hole LQRC0080	16.90	350,586	6,751,957	406
Kookynie	Diamantina	KOYC001	RC	20	21	1	16.70	1m @ 16.7 g/t Au from 20m in hole KOYC001	16.70	354,100	6,753,030	408
Kookynie	Champion	CNRC0040	RC	7	11	4	4.06	4m @ 4.06 g/t Au from 7m in hole CNRC0040	16.20	351,998	6,757,400	405
Kookynie	Champion	CNRC0018	RC	18	21	3	5.31	3m @ 5.31 g/t Au from 18m in hole CNRC0018	15.90	352,010	6,757,500	396
Kookynie	McTavish	MCTC31	RC	27	28	1	15.70	1m @ 15.7 g/t Au from 27m in hole MCTC31	15.70	350,436	6,754,000	411
Kookynie	Leipold	BLQ019	RC	24	28	4	3.88	4m @ 3.875 g/t Au from 24 m in hole BLQ019	15.50	350,607	6,751,881	410
Kookynie	Leipold	BLQ030	RC	44	50	6	2.59	6m @ 2.588 g/t Au from 44 m in hole BLQ030	15.50	350,642	6,751,819	391
Kookynie	McTavish	CRC085	RC	22	26	4	3.82	4m @ 3.82 g/t Au from 22m in hole CRC085	15.30	350,437	6,753,938	414
Kookynie	Champion	CNRC0036	RC	17	19	2	7.56	2m @ 7.56 g/t Au from 17m in hole CNRC0036	15.10	352,021	6,757,465	397
Kookynie	Leipold	LQRC0013	RC	63	65	2	7.45	2m @ 7.445 g/t Au from 63 m in hole LQRC0013	14.90	350,642	6,751,884	377
Kookynie	Leipold	LQRC0093	RC	29	33	4	3.73	4m @ 3.733 g/t Au from 29 m in hole LQRC0093	14.90	350,607	6,751,890	406
Kookynie	Champion	CNRC0014	RC	5	9	4	3.65	4m @ 3.65 g/t Au from 5m in hole CNRC0014	14.60	352,002	6,757,480	407
Kookynie	Leipold	LQRC0102	RC	24	30	6	2.39	6m @ 2.385 g/t Au from 24 m in hole LQRC0102	14.30	350,635	6,751,794	409
Kookynie	Leipold	BLQ020	RC	33	38	5	2.83	5m @ 2.832 g/t Au from 33 m in hole BLQ020	14.20	350,620	6,751,886	402
Kookynie	McTavish	CRC092	RC	20	24	4	3.54	4m @ 3.54 g/t Au from 20m in hole CRC092	14.20	350,469	6,753,800	416
Kookynie	Champion	CNRC0010	RC	30	32	2	6.93	2m @ 6.93 g/t Au from 30m in hole CNRC0010	13.90	352,015	6,757,480	386
Kookynie	McTavish	MCTC21	RC	42	43	1	13.90	1m @ 13.9 g/t Au from 42m in hole MCTC21	13.90	350,489	6,753,780	398
Kookynie	Cumberland	CPRC083	RC	36	39	3	4.61	3m @ 4.61 g/t Au from 36m in hole CPRC083	13.83	353,980	6,754,030	392
Kookynie	Diamantina	КОҮС042	RC	19	21	2	6.91	2m @ 6.91 g/t Au from 19m in hole KOYC042	13.82	353,880	6,752,820	408
Kookynie	Leipold	BLQ033	RC	44	45	1	13.64	1m @ 13.64 g/t Au from 44 m in hole BLQ033	13.60	350,647	6,751,779	393
Kookynie	Leipold	LQRC0086	RC	36	41	5	2.66	5m @ 2.662 g/t Au from 36 m in hole LQRC0086	13.30	350,603	6,751,930	394
Kookynie	Leipold	BLQ021	RC	54	55	1	13.08	1m @ 13.08 g/t Au from 54 m in hole BLQ021	13.10	350,629	6,751,891	385
Kookynie	Leipold	LQRC0025	RC	58	65	7	1.88	7m @ 1.876 g/t Au from 58 m in hole LQRC0025	13.10	350,612	6,751,958	379
Kookynie	Champion	DVRC0058	RC	137	140	3	4.34	3m @ 4.34 g/t Au from 137m in hole DVRC0058	13.00	352,068	6,757,440	295
Kookynie	Champion	CNRC0054	RC	9	10	1	13.00	1m @ 13 g/t Au from 9m in hole CNRC0054	13.00	352,005	6,757,435	405
Kookynie	Champion	CNRC0009	RC	10	12	2	6.26	2m @ 6.26 g/t Au from 10m in hole CNRC0009	12.50	352,005	6,757,480	403
Kookynie	Champion	CNRC0015	RC	19	21	2	6.22	2m @ 6.22 g/t Au from 19m in hole CNRC0015	12.40	352,010	6,757,480	396
Kookynie	McTavish	MCTC71	RC	33	36	3	4.10	3m @ 4.1 g/t Au from 33m in hole MCTC71	12.30	350,038	6,753,800	405
Kookynie	Leipold	LQRC0073	RC	7	8	1	12.20	1m @ 12.2 g/t Au from 7 m in hole LQRC0073	12.20	350,558	6,751,998	425

	<u>.</u>	-								AMG84 Zone 51	South - sample	e mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Kookynie	McTavish	CRC129	RC	58	60	2	6.09	2m @ 6.09 g/t Au from 58m in hole CRC129	12.20	350,459	6,753,910	384
Kookynie	Cumberland	KOYC105	RC	20	22	2	6.02	2m @ 6.02 g/t Au from 20m in hole KOYC105	12.04	353,905	6,754,000	411
Kookynie	Cumberland	KNP001	RC	28	29	1	12.00	1m @ 12 g/t Au from 28m in hole KNP001	12.00	353,926	6,753,980	404
Kookynie	Leipold	LQRC0126	RC	38	41	3	3.92	3m @ 3.923 g/t Au from 38 m in hole LQRC0126	11.80	350,621	6,751,897	398
Kookynie	Diamantina	CPRC021	RC	16	20	4	2.90	4m @ 2.9 g/t Au from 16m in hole CPRC021	11.60	353,890	6,752,820	407
Kookynie	Leipold	LQRC0067	RC	2	3	1	11.60	1m @ 11.6 g/t Au from 2 m in hole LQRC0067	11.60	350,524	6,752,027	430
Kookynie	Cumberland	KNP002	RC	87	89	2	5.74	2m @ 5.735 g/t Au from 87m in hole KNP002	11.47	353,996	6,753,980	353
Kookynie	Cumberland	KOYC076	RC	30	32	2	5.69	2m @ 5.69 g/t Au from 30m in hole KOYC076	11.38	353,945	6,754,030	402
Kookynie	Leipold	BLQ010	RC	44	46	2	5.59	2m @ 5.585 g/t Au from 44 m in hole BLQ010	11.20	350,589	6,751,982	393
Kookynie	Diamantina	PRC21	RC	16	20	4	2.79	4m @ 2.79 g/t Au from 16m in hole PRC21	11.16	353,919	6,752,812	411
Kookynie	Leipold	LQRC0109	RC	13	15	2	5.56	2m @ 5.555 g/t Au from 13 m in hole LQRC0109	11.10	350,529	6,752,139	420
Kookynie	Leipold	LQRC0030	RC	33	35	2	5.50	2m @ 5.5 g/t Au from 33 m in hole LQRC0030	11.00	350,572	6,751,984	402
Kookynie	Leipold	LQRC0037	RC	19	21	2	5.49	2m @ 5.485 g/t Au from 19 m in hole LQRC0037	11.00	350,556	6,752,041	415
Kookynie	Leipold	BLQ003	RC	102	106	4	2.73	4m @ 2.728 g/t Au from 102 m in hole BLQ003	10.90	350,656	6,751,917	340
Kookynie	Diamantina	DVRC0205	RC	72	73.5	1.5	7.26	1.5m @ 7.26 g/t Au from 72m in hole DVRC0205	10.89	354,122	6,753,052	353
Kookynie	Diamantina	DVRC0206	RC	135.5	137	1.5	7.24	1.5m @ 7.243 g/t Au from 135.5m in hole DVRC0206	10.87	354,142	6,753,052	290
Kookynie	Leipold	LQRC0132	RC	49	51	2	5.30	2m @ 5.3 g/t Au from 49 m in hole LQRC0132	10.60	350,629	6,751,856	389
Kookynie	Leipold	LQRC0030	RC	28	30	2	5.25	2m @ 5.25 g/t Au from 28 m in hole LQRC0030	10.50	350,574	6,751,985	407
Kookynie	Cumberland	KOYC056	RC	30	33	3	3.47	3m @ 3.467 g/t Au from 30m in hole KOYC056	10.40	353,964	6,753,980	402
Kookynie	Leipold	LQRC0088	RC	34	35	1	10.40	1m @ 10.4 g/t Au from 34 m in hole LQRC0088	10.40	350,614	6,751,924	398
Kookynie	McTavish	МСТС09	RC	6	10	4	2.55	4m @ 2.55 g/t Au from 6m in hole MCTC09	10.20	350,426	6,753,940	428
Kookynie	Cumberland	KOYC109	RC	42	47	5	2.02	5m @ 2.022 g/t Au from 42m in hole KOYC109	10.11	353,893	6,754,080	390
Kookynie	Diamantina	DVRC0195	RC	125	126.5	1.5	6.67	1.5m @ 6.67 g/t Au from 125m in hole DVRC0195	10.01	354,143	6,753,071	301

				_	-					GDA94 Zone	51 South - sample	mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm Weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Yundamindra	Pennyweight Point	PV095	RC	44	52	8	450.90	8m @ 56.36 g/t Au from 44 m in hole PV095	450.90	411,691	6,779,682	390
Yundamindra	Pennyweight Point	PV055	RC	36	40	4	104.60	4m @ 26.14 g/t Au from 36 m in hole PV055	104.60	411,688	6,779,593	401
Yundamindra	Landed at Last West	LW34	RC	10	20	10	9.99	10m @ 9.99 g/t Au from 10 m in hole LW34	99.90	403,918	6,780,611	442
Yundamindra	Pennyweight Point	PV105	RC	46	52	6	82.10	6m @ 13.69 g/t Au from 46 m in hole PV105	82.10	411,664	6,779,674	389
Yundamindra	Queen of the May	QMN5	RC	31	33	2	39.49	2m @ 39.49 g/t Au from 31 m in hole QMN5	79.00	405,551	6,776,342	415
Yundamindra	Landed at Last West	LW33	RC	36	45	9	8.56	9m @ 8.56 g/t Au from 36 m in hole LW33	77.00	403,930	6,780,627	420
Yundamindra	Pennyweight Point	PIV049	RC	16	28	12	75.20	12m @ 6.27 g/t Au from 16 m in hole PIV049	75.20	411,693	6,779,665	417
Yundamindra	Great Bonaparte	GB35	RC	1	13	12	5.64	12m @ 5.64 g/t Au from 1 m in hole GB35	67.70	404,161	6,779,982	451
Yundamindra	Landed at Last	LN93	RC	41	47	6	11.18	6m @ 11.18 g/t Au from 41 m in hole LN93	67.10	403,935	6,780,933	414
Yundamindra	Landed at Last West	LW32	RC	40	51	11	5.85	11m @ 5.85 g/t Au from 40 m in hole LW32	64.30	403,950	6,780,662	415
Yundamindra	Pennyweight Point	PV050	RC	50	70	20	61.00	20m @ 3.05 g/t Au from 50 m in hole PV050	61.00	411,725	6,779,619	379
Yundamindra	Pennyweight Point	P008	RC	36	44	8	60.10	8m @ 7.51 g/t Au from 36 m in hole P008	60.10	411,688	6,779,592	405
Yundamindra	Pennyweight Point	PDDH004	DD	121.1	123.1	2	52.60	2m @ 26.31 g/t Au from 121.1 m in hole PDDH004	52.60	411,751	6,779,655	335
Yundamindra	Golden Treasure North	TDN18	RC	12	13	1	48.10	1m @ 48.1 g/t Au from 12 m in hole TDN18	48.10	404,450	6,779,744	443
Yundamindra	Landed at Last	LN11	RC	30	32	2	23.29	2m @ 23.29 g/t Au from 30 m in hole LN11	46.60	403,771	6,781,069	426
Yundamindra	Landed at Last West	LW65	RC	42	48	6	7.54	6m @ 7.54 g/t Au from 42 m in hole LW65	45.20	403,945	6,780,653	416
Yundamindra	Pennyweight Point	PV043	RC	48	56	8	42.70	8m @ 5.34 g/t Au from 48 m in hole PV043	42.70	411,708	6,779,673	387
Yundamindra	Landed at Last West	LW87	RC	62	74	12	3.46	12m @ 3.46 g/t Au from 62 m in hole LW87	41.50	403,926	6,780,629	396
Yundamindra	Landed at Last West	LW19	RC	25	28	3	13.42	3m @ 13.42 g/t Au from 25 m in hole LW19	40.30	404,000	6,780,726	430
Yundamindra	Pennyweight Point	P055	RC	87	94	7	38.10	7m @ 5.44 g/t Au from 87 m in hole P055	38.10	411,746	6,779,625	361
Yundamindra	Landed at Last West	LW5	RC	12	19	7	5.39	7m @ 5.39 g/t Au from 12 m in hole LW5	37.70	403,936	6,780,647	441
Yundamindra	Landed at Last West	LW83	RC	52	61	9	3.78	9m @ 3.78 g/t Au from 52 m in hole LW83	34.00	403,918	6,780,622	406
Yundamindra	Landed at Last West	LW75	RC	42	48	6	5.60	6m @ 5.6 g/t Au from 42 m in hole LW75	33.60	403,918	6,780,610	416
Yundamindra	Mahalah	GT8	RC	4	6	2	16.70	2m @ 16.7 g/t Au from 4 m in hole GT8	33.40	404,219	6,778,764	449
Yundamindra	Queen of the May	QMN12	RC	36	40	4	8.14	4m @ 8.14 g/t Au from 36 m in hole QMN12	32.60	405,517	6,776,456	409
Yundamindra	Mahalah	GT3	RC	27	31	4	7.91	4m @ 7.91 g/t Au from 27 m in hole GT3	31.60	404,168	6,778,760	429
Yundamindra	Great Bonaparte	GB7	RC	32	35	3	10.36	3m @ 10.36 g/t Au from 32 m in hole GB7	31.10	404,229	6,779,953	428
Yundamindra	Pennyweight Point	PDDH003	DD	103.3	107.3	4	30.90	4m @ 7.73 g/t Au from 103.3 m in hole PDDH003	30.90	411,726	6,779,615	353
Yundamindra	Landed at Last West	LW14	RC	18	21	3	10.23	3m @ 10.23 g/t Au from 18 m in hole LW14	30.70	403,921	6,780,622	438
Yundamindra	Pennyweight Point	P013	RC	54	60	6	29.70	6m @ 4.95 g/t Au from 54 m in hole P013	29.70	411,725	6,779,625	390
Yundamindra	Great Bonaparte East	GBE23	RC	9	14	5	5.76	5m @ 5.76 g/t Au from 9 m in hole GBE23	28.80	404,448	6,780,018	445
Yundamindra	Pennyweight Point	PIV048	RC	60	64	4	27.80	4m @ 6.94 g/t Au from 60 m in hole PIV048	27.80	411,711	6,779,658	377
Yundamindra	Great Bonaparte	GB69	RC	47	50	3	9.11	3m @ 9.11 g/t Au from 47 m in hole GB69	27.30	404,229	6,779,980	415
Yundamindra	Landed at Last	LN13	RC	37	48	11	2.47	11m @ 2.47 g/t Au from 37 m in hole LN13	27.20	403,805	6,781,056	416
Yundamindra	Landed at Last	LN102	RC	16	18	2	13.60	2m @ 13.6 g/t Au from 16 m in hole LN102	27.20	403,927	6,780,873	439
Yundamindra	Great Bonaparte	GB22	RC	53	55	2	12.55	2m @ 12.55 g/t Au from 53 m in hole GB22	25.10	404,241	6,779,984	410

				_	-					GDA94 Zone	51 South - sample r	nid point
Project	Prospect	Hole_ID	Drill Type	From	То	width	Au_ppm Weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Yundamindra	Landed at Last	LND1	DD	41	42	1	25.00	1m @ 25 g/t Au from 41 m in hole LND1	25.00	403,812	6,781,077	417
Yundamindra	Landed at Last West	LW82	RC	39	42	3	8.34	3m @ 8.34 g/t Au from 39 m in hole LW82	25.00	403,920	6,780,621	420
Yundamindra	Landed at Last	LN7	RC	38	39	1	24.90	1m @ 24.9 g/t Au from 38 m in hole LN7	24.90	403,808	6,781,021	420
Yundamindra	Landed at Last	LN71	RC	32	36	4	6.12	4m @ 6.12 g/t Au from 32 m in hole LN71	24.50	403,858	6,780,999	423
Yundamindra	Mahalah	GT8	RC	50	56	6	4.05	6m @ 4.05 g/t Au from 50 m in hole GT8	24.30	404,195	6,778,762	408
Yundamindra	Landed at Last	LN140	RC	51	55	4	6.06	4m @ 6.06 g/t Au from 51 m in hole LN140	24.20	403,963	6,780,879	407
Yundamindra	Landed at Last	LN26	RC	46	51	5	4.82	5m @ 4.82 g/t Au from 46 m in hole LN26	24.10	403,853	6,781,008	411
Yundamindra	Pennyweight Point	P013	RC	62	68	6	23.90	6m @ 3.99 g/t Au from 62 m in hole P013	23.90	411,729	6,779,626	383
Yundamindra	Golden Treasure North	TDN4	RC	29	34	5	4.78	5m @ 4.78 g/t Au from 29 m in hole TDN4	23.90	404,575	6,779,585	431
Yundamindra	Pennyweight Point	PIV038	RC	46	48	2	23.80	2m @ 11.9 g/t Au from 46 m in hole PIV038	23.80	411,685	6,779,651	392
Yundamindra	Great Bonaparte	GB62	RC	38	41	3	7.70	3m @ 7.7 g/t Au from 38 m in hole GB62	23.10	404,240	6,779,955	423
Yundamindra	Pennyweight Point	PIV049	RC	30	34	4	23.00	4m @ 5.75 g/t Au from 30 m in hole PIV049	23.00	411,693	6,779,665	407
Yundamindra	Great Bonaparte	GB13	RC	25	29	4	5.73	4m @ 5.73 g/t Au from 25 m in hole GB13	22.90	404,215	6,779,965	434
Yundamindra	Landed at Last	LN38	RC	56	60	4	5.72	4m @ 5.72 g/t Au from 56 m in hole LN38	22.90	403,821	6,781,084	402
Yundamindra	Landed at Last West	LW71	RC	30	37	7	3.26	7m @ 3.26 g/t Au from 30 m in hole LW71	22.80	403,913	6,780,602	426
Yundamindra	Queen of the May	YRC011	RC	22	24	2	10.89	2m @ 10.89 g/t Au from 22 m in hole YRC011	21.80	405,535	6,776,333	423
Yundamindra	Great Bonaparte	GBD1	DD	40	41	1	20.50	1m @ 20.5 g/t Au from 40 m in hole GBD1	20.50	404,234	6,779,964	422
Yundamindra	Great Bonaparte East	GBE4	RC	29	32	3	6.75	3m @ 6.75 g/t Au from 29 m in hole GBE4	20.30	404,474	6,779,990	428
Yundamindra	Landed at Last West	LW48	RC	52	56	4	5.04	4m @ 5.04 g/t Au from 52 m in hole LW48	20.20	403,958	6,780,680	407
Yundamindra	Landed at Last West	LW51	RC	49	52	3	6.68	3m @ 6.68 g/t Au from 49 m in hole LW51	20.00	403,952	6,780,672	410
Yundamindra	Great Bonaparte East	GBE7	RC	28	33	5	3.95	5m @ 3.95 g/t Au from 28 m in hole GBE7	19.80	404,480	6,779,981	427
Yundamindra	Landed at Last	LN115	RC	38	45	7	2.78	7m @ 2.78 g/t Au from 38 m in hole LN115	19.50	403,949	6,780,920	416
Yundamindra	Landed at Last West	LW29	RC	43	50	7	2.77	7m @ 2.77 g/t Au from 43 m in hole LW29	19.40	403,941	6,780,644	414
Yundamindra	Great Bonaparte	GB33	RC	32	34	2	9.58	2m @ 9.58 g/t Au from 32 m in hole GB33	19.20	404,221	6,779,955	429
Yundamindra	Landed at Last West	LW28	RC	34	39	5	3.73	5m @ 3.73 g/t Au from 34 m in hole LW28	18.60	403,950	6,780,661	423
Yundamindra	Pennyweight Point	PH001	DD	94.5	99	4.5	18.10	4.5m @ 4.02 g/t Au from 94.5 m in hole PH001	18.10	411,729	6,779,621	355
Yundamindra	Landed at Last West	LW96A	RC	28	32	4	4.49	4m @ 4.49 g/t Au from 28 m in hole LW96A	18.00	403,911	6,780,592	429
Yundamindra	Pennyweight Point	P024	RC	56	62	6	17.90	6m @ 2.99 g/t Au from 56 m in hole P024	17.90	411,707	6,779,662	388
Yundamindra	Landed at Last	LN19	RC	10	14	4	4.46	4m @ 4.46 g/t Au from 10 m in hole LN19	17.80	403,830	6,780,987	443
Yundamindra	Landed at Last	LN44	RC	2	6	4	4.46	4m @ 4.46 g/t Au from 2 m in hole LN44	17.80	403,818	6,780,991	451
Yundamindra	Landed at Last	LND1	DD	33.8	36	2.2	8.09	2.2m @ 8.09 g/t Au from 33.8 m in hole LND1	17.80	403,815	6,781,079	422
Yundamindra	Great Bonaparte East	GBE29	RC	36	40	4	4.42	4m @ 4.42 g/t Au from 36 m in hole GBE29	17.70	404,509	6,779,947	420
Yundamindra	Landed at Last West	LC24	RC	25	27	2	8.76	2m @ 8.76 g/t Au from 25 m in hole LC24	17.50	403,989	6,780,793	430
Yundamindra	Landed at Last West	LW81	RC	32	35	3	5.85	3m @ 5.85 g/t Au from 32 m in hole LW81	17.50	403,919	6,780,621	426
Yundamindra	Pennyweight Point	P046	RC	89	92	3	16.80	3m @ 5.6 g/t Au from 89 m in hole P046	16.80	411,736	6,779,610	361
Yundamindra	Landed at Last West	LW80	RC	16	19	3	5.56	3m @ 5.56 g/t Au from 16 m in hole LW80	16.70	403,917	6,780,622	440

Project	Prospect	Hole ID	Drill Type	From	То	Width	Au nom Maightad average	Intercent Description	Crom motros	GDA94 Zone	51 South - sample	mid point
Floject	Flospect	Hole_ID	ыштуре	TTOIL	10	wiath	Au_ppm Weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Yundamindra	Landed at Last West	LW1	RC	16	18	2	8.29	2m @ 8.29 g/t Au from 16 m in hole LW1	16.60	403,928	6,780,639	440
Yundamindra	Landed at Last West	LW41	RC	10	13	3	5.40	3m @ 5.4 g/t Au from 10 m in hole LW41	16.20	403,899	6,780,598	445
Yundamindra	Landed at Last West	LW74	RC	31	35	4	4.05	4m @ 4.05 g/t Au from 31 m in hole LW74	16.20	403,919	6,780,610	427
Yundamindra	Landed at Last	LN91	RC	40	46	6	2.68	6m @ 2.68 g/t Au from 40 m in hole LN91	16.10	403,876	6,780,987	415
Yundamindra	Landed at Last West	LW8	RC	46	49	3	5.32	3m @ 5.32 g/t Au from 46 m in hole LW8	16.00	403,938	6,780,646	413
Yundamindra	Landed at Last West	LC14	RC	34	36	2	7.83	2m @ 7.83 g/t Au from 34 m in hole LC14	15.70	404,018	6,780,694	423
Yundamindra	Landed at Last	LN64	RC	24	28	4	3.93	4m @ 3.93 g/t Au from 24 m in hole LN64	15.70	403,854	6,780,995	430
Yundamindra	Golden Treasure North	TDN6	RC	34	39	5	3.11	5m @ 3.11 g/t Au from 34 m in hole TDN6	15.60	404,580	6,779,613	425
Yundamindra	Pennyweight Point	P009	RC	64	70	6	15.50	6m @ 2.59 g/t Au from 64 m in hole P009	15.50	411,704	6,779,595	382
Yundamindra	Pennyweight Point	P040	RC	45	47	2	15.50	2m @ 7.77 g/t Au from 45 m in hole P040	15.50	411,723	6,779,619	399
Yundamindra	Landed at Last	LN98	RC	57	59	2	7.56	2m @ 7.56 g/t Au from 57 m in hole LN98	15.10	403,893	6,781,002	402
Yundamindra	Landed at Last	LN77	RC	48	52	4	3.75	4m @ 3.75 g/t Au from 48 m in hole LN77	15.00	403,880	6,780,992	409
Yundamindra	Pennyweight Point	PIV050	RC	48	50	2	14.90	2m @ 7.44 g/t Au from 48 m in hole PIV050	14.90	411,703	6,779,685	389
Yundamindra	Pennyweight Point	P019	RC	64	72	8	14.60	8m @ 1.83 g/t Au from 64 m in hole P019	14.60	411,719	6,779,643	380
Yundamindra	Pennyweight Point	PV043	RC	40	46	6	14.60	6m @ 2.43 g/t Au from 40 m in hole PV043	14.60	411,708	6,779,673	396
Yundamindra	Great Bonaparte	GB58	RC	24	26	2	7.30	2m @ 7.3 g/t Au from 24 m in hole GB58	14.60	404,164	6,779,998	435
Yundamindra	Golden Treasure North	TDS4	RC	31	33	2	7.29	2m @ 7.29 g/t Au from 31 m in hole TDS4	14.60	404,760	6,779,466	427
Yundamindra	Landed at Last	LN88	RC	14	17	3	4.83	3m @ 4.83 g/t Au from 14 m in hole LN88	14.50	403,938	6,780,830	440
Yundamindra	Bound to Rise	HC007	RC	30	32	2	14.40	2m @ 7.21 g/t Au from 30 m in hole HC007	14.40	411,277	6,778,720	421
Yundamindra	Pennyweight Point	P044	RC	68	73	5	14.30	5m @ 2.86 g/t Au from 68 m in hole P044	14.30	411,720	6,779,605	378
Yundamindra	Pennyweight Point	PDDH004	DD	128.1	131.1	3	14.30	3m @ 4.76 g/t Au from 128.1 m in hole PDDH004	14.30	411,747	6,779,655	328
Yundamindra	Landed at Last	LN133	RC	55	56	1	14.20	1m @ 14.2 g/t Au from 55 m in hole LN133	14.20	403,933	6,780,958	404
Yundamindra	Golden Treasure North	TDS1	RC	15	16	1	14.10	1m @ 14.1 g/t Au from 15 m in hole TDS1	14.10	404,722	6,779,486	442
Yundamindra	Landed at Last West	LW29	RC	36	42	6	2.29	6m @ 2.29 g/t Au from 36 m in hole LW29	13.70	403,938	6,780,645	421
Yundamindra	New Golden Treasure	GT30	RC	8	12	4	3.40	4m @ 3.4 g/t Au from 8 m in hole GT30	13.60	404,123	6,778,862	448
Yundamindra	Landed at Last	LN33	RC	53	56	3	4.51	3m @ 4.51 g/t Au from 53 m in hole LN33	13.50	403,839	6,781,036	405
Yundamindra	Landed at Last West	LW9	RC	33	38	5	2.70	5m @ 2.7 g/t Au from 33 m in hole LW9	13.50	403,955	6,780,671	423
Yundamindra	Landed at Last	LN6	RC	31	35	4	3.34	4m @ 3.34 g/t Au from 31 m in hole LN6	13.40	403,797	6,781,037	425
Yundamindra	Pennyweight Point	PIV048	RC	48	52	4	13.30	4m @ 3.33 g/t Au from 48 m in hole PIV048	13.30	411,711	6,779,658	389
Yundamindra	Pennyweight Point	PDDH003	DD	113.3	119.3	6	13.20	6m @ 2.2 g/t Au from 113.3 m in hole PDDH003	13.20	411,724	6,779,621	344
Yundamindra	Great Bonaparte East	GBE11	RC	33	38	5	2.59	5m @ 2.59 g/t Au from 33 m in hole GBE11	13.00	404,477	6,780,001	423
Yundamindra	Great Bonaparte	GB64	RC	33	34	1	12.90	1m @ 12.9 g/t Au from 33 m in hole GB64	12.90	404,208	6,779,978	428
Yundamindra	Pennyweight Point	PV045	RC	62	64	2	12.70	2m @ 6.35 g/t Au from 62 m in hole PV045	12.70	411,700	6,779,700	375
Yundamindra	Pennyweight Point	PV073	RC	28	30	2	12.50	2m @ 6.25 g/t Au from 28 m in hole PV073	12.50	411,659	6,779,643	410
Yundamindra	Landed at Last	LN68	RC	39	40	1	12.50	1m @ 12.5 g/t Au from 39 m in hole LN68	12.50	403,796	6,781,051	419
Yundamindra	Landed at Last	LN34	RC	48	54	6	2.07	6m @ 2.07 g/t Au from 48 m in hole LN34	12.40	403,825	6,781,051	409

				_	-					GDA94 Zone	51 South - sample	mid point
Project	Prospect	Hole_ID	Drill Type	From	То	Width	Au_ppm Weighted average	Intercept Description	Gram metres	Easting	Northing	RL
Yundamindra	Great Bonaparte	GB75	RC	30	32	2	6.14	2m @ 6.14 g/t Au from 30 m in hole GB75	12.30	404,159	6,780,010	430
Yundamindra	Great Bonaparte East	GBE8	RC	21	27	6	2.03	6m @ 2.03 g/t Au from 21 m in hole GBE8	12.20	404,465	6,780,007	433
Yundamindra	Pennyweight Point	PIV038	RC	16	22	6	12.10	6m @ 2.02 g/t Au from 16 m in hole PIV038	12.10	411,685	6,779,651	420
Yundamindra	Pennyweight Point	P021	RC	44	48	4	12.00	4m @ 3.01 g/t Au from 44 m in hole P021	12.00	411,703	6,779,660	399
Yundamindra	Landed at Last West	LW44	RC	28	32	4	3.00	4m @ 3 g/t Au from 28 m in hole LW44	12.00	403,939	6,780,645	429
Yundamindra	Landed at Last West	LW46	RC	43	47	4	3.00	4m @ 3 g/t Au from 43 m in hole LW46	12.00	403,963	6,780,689	415
Yundamindra	Landed at Last West	LW98	RC	29	31	2	5.99	2m @ 5.99 g/t Au from 29 m in hole LW98	12.00	404,002	6,780,815	426
Yundamindra	Landed at Last	LN22	RC	19	21	2	5.95	2m @ 5.95 g/t Au from 19 m in hole LN22	11.90	403,847	6,780,989	436
Yundamindra	Landed at Last	LN94	RC	32	35	3	3.93	3m @ 3.93 g/t Au from 32 m in hole LN94	11.80	403,954	6,780,844	424
Yundamindra	Landed at Last West	LW49	RC	33	36	3	3.93	3m @ 3.93 g/t Au from 33 m in hole LW49	11.80	403,959	6,780,680	424
Yundamindra	Great Bonaparte	GB24	RC	52	54	2	5.78	2m @ 5.78 g/t Au from 52 m in hole GB24	11.60	404,208	6,780,004	410
Yundamindra	Landed at Last	LN75	RC	55	58	3	3.87	3m @ 3.87 g/t Au from 55 m in hole LN75	11.60	403,865	6,781,005	403
Yundamindra	Landed at Last West	LW54	RC	61	63	2	5.82	2m @ 5.82 g/t Au from 61 m in hole LW54	11.60	403,980	6,780,736	400
Yundamindra	Great Bonaparte	GB12	RC	41	43	2	5.76	2m @ 5.76 g/t Au from 41 m in hole GB12	11.50	404,219	6,779,979	420
Yundamindra	Landed at Last West	LW79	RC	9	12	3	3.80	3m @ 3.8 g/t Au from 9 m in hole LW79	11.40	403,916	6,780,623	446
Yundamindra	Landed at Last West	LW97A	RC	71	74	3	3.80	3m @ 3.8 g/t Au from 71 m in hole LW97A	11.40	403,919	6,780,621	392
Yundamindra	Landed at Last West	LW18	RC	46	48	2	5.61	2m @ 5.61 g/t Au from 46 m in hole LW18	11.20	403,978	6,780,737	413
Yundamindra	Pennyweight Point	P026	RC	56	62	6	11.00	6m @ 1.84 g/t Au from 56 m in hole P026	11.00	411,701	6,779,680	388
Yundamindra	Landed at Last West	LC13	RC	18	21	3	3.66	3m @ 3.66 g/t Au from 18 m in hole LC13	11.00	404,007	6,780,688	437
Yundamindra	Landed at Last	LN32	RC	50	54	4	2.74	4m @ 2.74 g/t Au from 50 m in hole LN32	11.00	403,853	6,781,022	407
Yundamindra	Landed at Last	LN63	RC	36	40	4	2.70	4m @ 2.7 g/t Au from 36 m in hole LN63	10.80	403,869	6,780,982	420
Yundamindra	Landed at Last West	LW5	RC	8	11	3	3.59	3m @ 3.59 g/t Au from 8 m in hole LW5	10.80	403,935	6,780,650	446
Yundamindra	Pennyweight Point	PV045	RC	52	58	6	10.70	6m @ 1.79 g/t Au from 52 m in hole PV045	10.70	411,700	6,779,700	383
Yundamindra	Pennyweight Point	PV051	RC	14	18	4	10.60	4m @ 2.64 g/t Au from 14 m in hole PV051	10.60	411,743	6,779,609	424
Yundamindra	Landed at Last West	LW90	RC	34	37	3	3.53	3m @ 3.53 g/t Au from 34 m in hole LW90	10.60	403,932	6,780,637	424
Yundamindra	Pennyweight Point	P014	RC	58	64	6	10.50	6m @ 1.75 g/t Au from 58 m in hole P014	10.50	411,723	6,779,621	387
Yundamindra	Pennyweight Point	PIV004	RC	2	4	2	10.50	2m @ 5.25 g/t Au from 2 m in hole PIV004	10.50	411,711	6,779,522	437
Yundamindra	Landed at Last	LN103	RC	30	34	4	2.63	4m @ 2.63 g/t Au from 30 m in hole LN103	10.50	403,936	6,780,881	425
Yundamindra	Pennyweight Point	PV103	RC	30	34	4	10.40	4m @ 2.6 g/t Au from 30 m in hole PV103	10.40	411,682	6,779,709	406
Yundamindra	Mahalah	GT12	RC	61	63	2	5.22	2m @ 5.22 g/t Au from 61 m in hole GT12	10.40	404,211	6,778,763	399
Yundamindra	Landed at Last	LN66	RC	37	39	2	5.19	2m @ 5.19 g/t Au from 37 m in hole LN66	10.40	403,823	6,781,022	420
Yundamindra	Landed at Last West	LW7	RC	31	34	3	3.48	3m @ 3.48 g/t Au from 31 m in hole LW7	10.40	403,944	6,780,654	426
Yundamindra	Pennyweight Point	PV057	RC	32	34	2	10.00	2m @ 5 g/t Au from 32 m in hole PV057	10	411,697	6,779,566	407
Yundamindra	Pennyweight Point	PV093	RC	64	67	3	10.00	3m @ 3.32 g/t Au from 64 m in hole PV093	10	411,706	6,779,584	374
Yundamindra	Landed at Last	LN114	RC	24	28	4	2.51	4m @ 2.51 g/t Au from 24 m in hole LN114	10	403,940	6,780,911	430
Yundamindra	Landed at Last West	LW107	RC	40	43	3	3.32	3m @ 3.32 g/t Au from 40 m in hole LW107	10	403,988	6,780,800	416

TENEMENT	REGISTERED HOLDER	SHARES HELD	PLAINTED
Kookynie Teneme	ents		
M 40/77	Nex Metals Explorations Limited	90,405/90,405	No
M 40/61	Nex Metals Explorations Limited	100/100	No
M 40/27	Nex Metals Explorations Limited	100/100	No
M 40/22	Nex Metals Explorations Limited	100/100	No
L 40/9	Nex Metals Explorations Limited	100/100	No
G 40/3	Nex Metals Explorations Limited	100/100	No
E 40/333	Nex Metals Explorations Limited	100/100	No
E 40/332	Nex Metals Explorations Limited	100/100	No
Yundamindra Ten	ements		
M 39/840	Nex Metals Explorations Limited	100/100	Yes
M 39/839	Nex Metals Explorations Limited	100/100	Yes
M 39/410	Nex Metals Explorations Limited	100/100	Yes
M 39/409	Nex Metals Explorations Limited	100/100	Yes
M 39/408	Nex Metals Explorations Limited	100/100	Yes
M 39/407	Nex Metals Explorations Limited	100/100	Yes
M 39/406	Nex Metals Explorations Limited	100/100	Yes
M 39/274	Nex Metals Explorations Limited	100/100	Yes

TENEMENT	REGISTERED HOLDER	SHARES HELD	PLAINTED
M 39/84	Nex Metals Explorations Limited	100/100	Yes
L 39/258	Nex Metals Explorations Limited	100/100	No
L 39/52	Nex Metals Explorations Limited	96/96	No
L 39/34	Nex Metals Explorations Limited	100/100	No

Appendix Three – JORC Code, 2012 Edition – Table 1

Section 1: Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Regarding the RC sampling, the drilling notes the use of various bit sizes between 5 and 5 ¼ inch, with riffle splitting to obtain a sample for analysis. All sampling appears to be on 1 metre samples. Diamond core is NQ sized with ½ core submitted for analysis and based on geological intervals, no bigger than 1m and no smaller than 30cms. Analysis varied between AAS and 30 to 50g fire assay. Very little screen fire assay analysis has been performed. The work conducted and under review appears to be "industry standard practice". However, the data on hand requires field verification and follow up drilling.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RC drilling notes the use of various bit sizes between 5 and 5 ¼ inch. Diamond core is noted at being NQ diameter core. Structural measurements are on file, however the method of obtaining such measurements was not noted.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No records exist to the method of recording and assessing core and chip recoveries. Unknown. There appears to be no biased in the data with regards to a relationship between sample recovery and grade. The drilling intercepts delineate similar plunged shoots that the historical workings mined – so, prima facie, there appears to be little bias. However, future work will include such assurance protocols including twinned holes to verify stated mineralised intercepts on selected sections.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 All recovered sample from RC and DD have been geologically logged. No records of geotechnical logging exist. The drilling data in its current state will not support a Mineral Resource Statement to JORC 2012 guidelines. Confirmatory drilling

Criteria	JORC Code explanation	Commentary
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	is required and investigation of existing core/RC sample (if possible) is required.Geology logging was qualitative, and no core photography exists.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Core was halved and a consistent side was taken for analysis. RC samples were riffle split to obtain a nominal 3kg sample for analysis. No notes were available regarding the quality and appropriateness of the sample preparation technique. Field duplicates have been noted as a historical issue previously. Sample size is appropriate, whilst larger sizes given the nature of the mineralisation would be better, it would be logistically and cost prohibitive.
Quality of assay data and laboratory tests		 The fire assay data appears sufficient, whereas the AAS analysis may be understating the gold content. No geophysical tools, spectrometers, handheld XRF instruments were used. Since all of the drilling was conducted by historic explorers there is a failure to document the QAQC practices conducted at the time of drilling. As such there is no data to be examined for this work.
Verification of sampling and assaying		 Lab certificate inspection on selected jobs was conducted by the CP and found to be within specification. No twinned holes have been completed. No record of primary data protocols, however, historical data has been collated and interrogated with spiralis data omitted (that being drill holes with no recorded collar coordinates or down hole survey information – that being the drill hole set azimuth and inclination. No adjustment to the available assay data has been made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 No mineral resources are being stated beyond the referenced Pre JORC 2012 mineral resource statements noted – for those please refer to ASX Announcement by NME dated 1st August 2011 "Update on activities".

Criteria	J	ORC Code explanation	Commentary
	•	Quality and adequacy of topographic control.	 Both AMG84and GDA94 were used. The surveyed collar coordinates appear to be sufficient, however, better definition is required of the topography to allow for a JORC 2012 compliant estimation.
Data spaci and distribution	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 The data spacing is sufficient to establish a relatively high confidence in geological and grade continuity, however, peripheral data to support the drill holes requires further work to ensure compliance with JORC 2012 guidelines. No sample compositing was applied beyond the calculation of down hole significant intercepts.
	of • in to	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 All drilling appears to be perpendicular to the main structure that hosts mineralisation. Secondary structures oblique to the main structure may have influence hanging and foot wall intercepts. The author believes that the drilling orientation and the orientation of key mineralised structures has not introduced a bias.
Sample security	•		Unknown as historical work is being discussed.
Audits reviews	or •	The results of any audits or reviews of sampling techniques and data.	• Beyond verifying laboratory certificates and cross checking with the database, no further reviews of the sampling techniques and data was completed at the time of reporting.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary			
Mineral	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint	Please refer to the tenement schedule below:			
tenement		TENEMENT	REGISTERED HOLDER	SHARES HELD	PLAINTED
and land	ventures, partnerships, overriding royalties, native title interests,	Kookynie Tenemer	its		
tenure status	historical sites, wilderness or national park and environmental	M 40/77	Nex Metals Explorations Limited	90,405/90,405	No
D	The accurity of the tenure held at the time of reporting clong with any	Nex Metals Explorations Limited	100/100	No	
		M 40/27	Nex Metals Explorations Limited	100/100	No
	L 40/9 Ne. G 40/3 Ne.	Nex Metals Explorations Limited	100/100	No	
		L 40/9	Nex Metals Explorations Limited	100/100	No
		G 40/3	Nex Metals Explorations Limited	100/100	No
			Nex Metals Explorations Limited	100/100	No
		E 40/332	Nex Metals Explorations Limited	100/100	No
		Yundamindra Tenements			
		M 39/840	Nex Metals Explorations Limited	100/100	Yes
		M 39/839	Nex Metals Explorations Limited	100/100	Yes
		M 39/410	Nex Metals Explorations Limited	100/100	Yes
		M 39/409	Nex Metals Explorations Limited	100/100	Yes
		M 39/408	Nex Metals Explorations Limited	100/100	Yes
		M 39/407	Nex Metals Explorations Limited	100/100	Yes
		M 39/406		100/100	Yes
			Nex Metals Explorations Limited		Yes
	M 39/406Nex Metals Explorations Limited100/100M 39/274Nex Metals Explorations Limited100/100M 39/84Nex Metals Explorations Limited100/100L 39/258Nex Metals Explorations Limited100/100L 39/52Nex Metals Explorations Limited96/96L 39/34Nex Metals Explorations Limited100/100• Nex Metals Explorations Limited100/100		Yes		
		100/100	No		
			No		
		L 39/34	Nex Metals Explorations Limited	100/100	No
		As illustrated	Explorations Ltd hold the tenu above, the tenements assoc a Project are currently subject	iated with the	eedings.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 historical dril The historical down hole suddepth – it applin establishin pickups required on file are constructed on file a	Explorations Ltd have done a ling completed over the previous a work completed requires fur arveying (if possible) of drill ho pears below this depth; hole of the location of mineralisation ire verification. All laboratory allated, only recommendation in mineralised zones.	bus 30 years. ther field verifi- bles beyond 60 deviation becor on in 3D. Furth- certificates for	cation via re-) metres mes a factor ermore, collar the assays

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Kookynie: The project area is in the Keith-Kilkenny Tectonic Zone within the north-northwest trending Archean-aged Malcolm greenstone belt. The Keith-Kilkenny Tectonic Zone is a triangular shaped area hosting a succession of Archean mafic-ultramafic igneous and meta-sedimentary rocks. Regional magnetic data indicates the Kookynie region is bounded to the west by the north-trending Mt George Shear, the Keith-Kilkenny Shear Zone to the east and the Mulliberry Granitoid Complex to the south. There are several styles of gold mineralisation identified in the Kookynie region. The largest system discovered to date is the high-grade mineralisation mined at the Admiral/Butterfly area, Desdemona area and Niagara area. The gold mineralisation is associated with pyritic quartz veins hosted within north to northeast dipping structures cross-cutting 'favourable' lithologies which can also extend into shears along geological contacts. Gold mineralisation tends to be preferentially concentrated in differentiated dolerite sills associated with pyrite/carbonate/silica/sericite wall rock alteration. Yundramindra: The Project area covers a belt of gold mineralisation occurring along the margin of a regional homblende granodiorite pluton intrusive to mafic rocks, largely metabasalts of Association 2 in the Murrin-Margaret sector of the Eastern Goldfields. The mineralised contact area between granitoid and mafic rocks is arcuate in shape and is subdivided on geographic locations into the "Western" and 'Eastern" lines: The Western Line consists of a NNW trending zone of generally continuous, east dipping quartz reefs and quartz filled shears in granitoid near the contact between a large homblende granodiorite pluton and a thin, remnant greenstone succession. The Western Line encompasses the eastern portion of the arcuate granodiorite pluton and a thi
	26	

Criteria J	JORC Code explanation	Commentary
		Eastern Line occurs in two settings: 1. Associated with quartz veining within the mafic succession, and 2. Within quartz veins/stockworks within the granodiorite.
Drill hole • Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 For both Kookynie and Yundramindra, please see appendices one and two, for all drill collar information, and selected significant intercepts. The significant intercepts were first calculated by using values >1 g/t Au over a minimum width of 1m with no more than 1m internal waste or values <1 g/t Au. The information was further refined were by only intercepts that produced gram metre values greater than 10 are presented. All drill holes within the Project areas are presented. The rationale behind presenting the significant intercepts using the methodology above was to illustrate the significance of the intercepts and the extent, that being, the actual number of this high tenure type intercepts within both Projects.
Data aggregation methods		 Initially, significant intercepts were calculated using values >1 g/t Au over a minimum width of 1m with no more than 1m internal waste or values <1 g/t Au. Subsequently, since 1,263 significant intercepts were produced (771 for Yundramindra and 492 for Kookynie) from the data available, a further refinement of intercepts that produced >10-gram metres were presented. All intercepts were treated as above with no top cuts applied. No metal equivalents are discussed or reported.
between mineralisatio n widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Given the shallow dipping nature (approximately -45° on average) of the mineralisation observed at Kookynie and Yundramindra, the nominal drilling inclination of -60° lends to close to truth width intercepts. However, cross cutting structures within the hanging wall and footwall are noted and may influence the results.
Diagrams •	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Please see main body of the announcement for the relevant figures.
Balanced • reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of	 Regarding the significant intercept tables, the sheer volume of data (No. of significant intercepts - 771 for Yundramindra and 492 for Kookynie) based on the data aggregation methods described above

Criteria	JORC Code explanation	Commentary			
Exploration Results.		 is not practical to report nor beneficial. In context though, below is a table of the recorded drilling to date so comparison to the number of holes drilled versus the number of significant intercepts present can be made.: 			
		Drilling Summary RC DD RC/DD Total			
		Drilling Summary RC DD RC/DD Total No. drill holes Metres No.			
		Kookynie 920 43,100 11 3,223.3 4 538.1 935 46,81 Yundramindra 837 39,233 15 1,785.6 1 56.3 853 41,00			
		Total 1757 82,333 26 5,008.9 5 594.4 1788 87,9			
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The area has had significant historical production recorded and is accessible via the MINEDEX database. All stated mineral resources for the Kookynie and Yundramindra Projects are pre-JORC 2012. Considerable work around bulk dens down hole surveys and metallurgy, coupled with the planned drillin will be required to ensure compliance with JORC 2012 guidelines. 			
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Metalicity intends to drill the known and extend the mineralised occurrences within the Kookynie and Yundramindra Projects. The Yundramindra Project is currently under the plaint process, however Metalicity believes that Nex Metals is well advanced in defending those claims. The drilling will be designed to validate historical drill with a view to making maiden JORC 2012 Mineral Resource Estimestatements. Metalicity has made the aspirational statement of developing "significant resource and reserve base on which to commence a sustainable mining operation focusing on grade and margin". Diagrams pertinent to the area's in question are supplied in the box of this announcement. 			